

18EC744

Soventh Semester B.E. Degree Examination, June/July 2023 Cryptography

Time: 3 hrs.

Max. Marks: 100

	Note: Answer any FIVE full questions, choosing ONE full question from each module		
		Module-1	
1	a.	8	
		(i) Plaintext (ii) Ciphertext (iii) Encryption	
	9	(iv) Decryption (v) Cryptanalysis (vi) Brute force attack	(06 Marks)
	b.	JI I I I I I I I I I I I I I I I I I I	
		give rules for encryption.	(08 Marks)
	c.	Mention the modular arithmetic operation properties and prove the same.	(06 Marks)
•		OR 1	
2	a.	Draw the model of symmetric cryptosystem and explain it.	(08 Marks)
	b.	Encrypt the plaintext "Hard Work" using Hill Cipher with key [7 8] and decry	pt the same.
	υ.	2 letypt the plantext Train work asing this cipilet with key 19 3 and deery	pt the same.
			(08 Marks)
	c.	Find the GCD of (2740, 1760) using Euclid's algorithm.	(04 Marks)
		Module-2	
3	a.	With neat diagram, explain AES encryption process.	(10 Marks)
	b.	Explain the AES key expansion.	(10 Marks)
		OR	
4	a.	Draw the single round DES algorithm and explain the process in detail.	(10 Marks)
	b.	Briefly explain the major transformations in AES algorithm.	(10 Marks)
		Cy Cy	
_		Find the GCD [a(x), b(x)] for a(x) = $\frac{\text{Module-3}}{x^6 + x^5 + x^4} + x^3 + x^2 + x + 1$, b(x) = $x^4 + x^2$	
5	a.	Find the GCD [a(x), b(x)] for a(x) = $x^0 + x^3 + x^4 + x^3 + x^2 + x + 1$, b(x) = $x^4 + x^2$	+x+1.
	b.	State the axioms of groups and rings.	(07 Marks)
	c.	State and prove Fermat's theorem.	(06 Marks)
	C.	State and prove Permat's dicorem.	(07 Marks)
		OR	
6	2		
U	a. h	Find the GCD of $[a(x), b(x)]$ for $a(x) = x^8 + x^4 + x^3 + x + 1$, $b(x) = x^5$.	(08 Marks)
	υ.	Define the following terms:	
		(i) Abelian group (ii) Integral domain (iii) Fields	(06 Marks)
	c.	State and prove Euler's theorem.	(06 Marks)
		M. 1.1. 4	
7	-	Module-4 Differentiate letters a conventional engagetien and multiplicate between a conventional engagetien	(0.6 N
7	a.	Differentiate between a conventional encryption and public-key encryption.	(06 Marks)

c. Perform an encryption and decryption using RSA algorithm for p = 3, q = 11, e = 7 and

b. Mention the requirements for public key cryptography.

m = 5. Find the cipher text 'c' and decrypt 'c' to get plaintext.

OR

8 a. With a neat diagram explain public key cryptography.

b. Explain in brief the Diffie Hellman key exchange algorithm.

c. Write a note on elliptic curve arithmetic on the elliptic curve E23(1, 1) = P = (3, 10) and Q(9, 7). Find: (i) P + Q (ii) 2P (07 Marks)

Module-5

9 a. Explain linear feedback shift registers with necessary diagrams.

b. Write a note on linear congruential generates.

(06 Marks)

c. Explain the following with necessary diagrams:

(i) Generalized Geffe Generator

(ii) Threshold Generator (06 Marks)

OR

10 a. Explain the following with necessary diagrams:

(i) Self decimated generators

(ii) Gollmann cascade

b. Write short notes on:

(i) NANOTEQ

(ii) RAMBOTAN

(iii) GIFFORD Algorithms

(10 Marks)

(10 Marks)