(08 Marks)

EUSN PE D

Time: 3 hrs

Seventh Semester B.E. Degree Examination, June/July 2023

Power Electronics

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. What is a power converter? List the different types of power converters and mention their conversion function. (10 Marks)
 - b. Explain the control characteristics of IGBT and SCR. (05 Marks)
 - c. Discuss the peripheral effects of power-electronic equipments. (05 Marks)

OR

- 2 a. With the help of switching waveforms explain the switching characteristics of power MOSFET. (06 Marks)
 - b. Give the comparison between BJT, MOSFET and IGBT. (06 Marks)
 - c. For the transistor switch shown in Fig.Q2(c).
 - i) Calculate forced beta B_f of transistor
 - ii) If the manufacturer's specified β is in the range 8 to 40, calculate the minimum overdrive factor (ODF)
 - iii) Obtain the power loss P_T of the transistor.

Module-2

- a. Draw the two transistor model of thyristor and derive an expression for the a node current in terms of common base current gain α_1 and α_2 of the transistors. (10 Marks)
 - b. Explain the various methods of turning on a thyristor. (05 Marks)
 - c. Explain how thyristors are protected against high $\frac{di}{dt}$. (05 Marks)

OR

- 4 a. Explain R firing circuit and RC firing circuit with relevant waveforms. (10 Marks)
 - b. An UJT used in a relaxation oscillator circuit is having $\eta = 0.7$, $V_v = 1V$ and the supply voltage to the circuit is 15V. Design the suitable values of R and C given that the frequency of oscillation is 1KHz. Peak current is 1mA and valley current is 8mA. (05 Marks)
 - c. Compare natural and forced communication. (05 Marks)

Module-3

- 5 a. Explain the operation of single phase semi converter with inductive load with relevant waveforms. (08 Marks)
 - b. Explain the principle of on-off control of a AC voltage controller. (06 Marks)
 - c. A single phase full converter is fed from 230V 50Hz supply. Find the average load voltage and current if the load resistance is 10Ω and firing angle is 45°. (06 Marks)

OR

- 6 a. Explain the operation of single phase full converter with RL load with relevant circuit and waveforms. (08 Marks)
 - b. A single phase half wave AC voltage controller has a resistance load of $R = 5\Omega$ and input voltage $V_S = 120V$, 60Hz. The delay angle of thyristor is $\alpha = \pi/3$. Determine:
 - i) RMS output voltage
 - ii) Input power factor
 - iii) Average input current.

(07 Marks)

c. What are the applications of AC voltage controller?

(05 Marks)

Module-4

- 7 a. Explain the operation of a step down chopper with RL load and also derive an expression for peak-peak output ripple current. (10 Marks)
 - b. Explain the principle of operation of a step-up chopper. (05 Marks)
 - c. What are the applications of choppers?

(05 Marks)

OR

8 a. Explain the classification of choppers.

(10 Marks)

b. Explain the operation of Boost regulation with circuit and waveforms.

(10 Marks)

Module-5

CMRIT LIBRARY

- 9 a. Explain the performance parameters of an inverter. BANGALORE 560 037 (08 Marks)
 - b. Explain the principle of operation of a single phase half bridge inverter.

(06 Marks)

c. Explain the operation of single phase AC switch.

(06 Marks)

OR

- a. Explain single pulse width modulation and multiple pulse width modulation methods of controlling the output voltage of inverter. (10 Marks)
 - b. Write a brief note on current source inverter.

(05 Marks)

- c. A single phase bridge inverter has a resistive load of $R=2.4\Omega$ and dc input voltage is $V_s=48V$. Determine
 - i) The RMS output voltage at the fundamental frequency
 - ii) The output power
 - iii) The average and peak current of each transistor
 - iv) Peak reverse blocking voltage of each transistor.

(05 Marks)

* * * * *