

SN Forst Semester R.F. Degree Evar

17MAT11

Engineering Mathematics – I

Max. Marks: 100

BANGALOR Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Obtain the nth derivative of

$$\frac{x}{(1+x)(1+2x)} \tag{06 Marks}$$

b. Prove that the curves $r = a \sec^2 \theta/2$ and $r = a \csc^2 \theta/2$ cut orthogonally. (07 Marks)

c. Find the radius of curvature at the point $(\frac{3}{2}, \frac{3}{2})$ on the curve $x^3 + y^3 = 3xy$. (07 Marks)

OR

2 a. If $y = e^{a \sin^{-1} x}$, then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$. (06 Marks)

b. Prove that with usual notation, $\tan \phi = r \frac{d\theta}{dr}$ (07 Marks)

c. Find the pedal equation of the curve $\frac{2a}{r} = (1 - \cos \theta)$ (07 Marks)

Module-2

3 a. If $u = \sin^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$, prove that $xu_x + yu_y = 2 \tan u$ (06 Marks)

b. Obtain Taylor's series expansion of log(cos x) about the point $x = \pi/3$ upto the fourth degree term. (07 Marks)

c. If $u = x + 3y^2 - z^3$; $v = 4x^2yz$; $w = 2z^2 - xy$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at (1, -1, 0). (07 Marks)

OR

4 a. Evaluate $\lim_{x\to 0} \left[\frac{\sin^2 x - x^2}{x^2 \sin^2 x} \right]$

(06 Marks)

b. Expand log(1 + sinx) in power of x by Maclaurin's expansion upto the term containing x³.

(07 Marks)

c. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$ (07 Marks)

Module-3

5 a. A particle moves along the curve whose parametric equation are $x = t^3 + 1$, $y = t^2$, z = 2t + 5 where t is the time. Find the components of velocity and acceleration at t = 1 in the direction of $\hat{i} + \hat{j} + 3\hat{k}$. (10 Marks)

b. A vector field is given by $\vec{F} = (x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j}$. Show that the field is irrotational and find its scalar potential such that $\vec{F} = \nabla \phi$. (10 Marks)

17MAT11

OR

- 6 a. If $\vec{F} = (x+y+1)i+j-(x+y)k$, show that $\vec{F} \cdot \text{curl } \vec{F} = 0$ (06 Marks)
 - b. Show that $\vec{F} = \frac{x \hat{i} + y \hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational. (07 Marks)
 - c. Show that $\operatorname{div}(\operatorname{curl} \vec{F}) = 0$ (07 Marks)

Module-4

7 a. Obtain the reduction formula for $\int \cos^n x \, dx$ where n is a positive integer hence evaluate

$$\int_{0}^{\pi/2} \cos^{n} x \, dx \tag{06 Marks}$$

- b. Solve y(2x y + 1) + x(3x 4y + 3)dy = 0 (07 Marks)
- c. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is the parameter. (07 Marks)

OR

- 8 a. Evaluate $\int_{a}^{a} x \sqrt{ax xz} dx$. (06 Marks)
 - b. Solve $x^3 \frac{dy}{dx} x^2y = -y^4 \cos x$. (07 Marks)
 - c. If the air is maintained at 30°C and the temperature of the body cools from 80°C to 60°C in 12 minutes. Find the temperature of the body after 24 minutes. (07 Marks)

Module-5

9 a. Find the rank of a matrix

$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

using elementary row operating. (06 Marks)

- b. Solve the system of equation 2x+5y+7z=52, 2x+y-z=0, x+y+z=9 by using Gauss-Jordan method. (07 Marks)
- c. Diagnolise the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$. (07 Marks)

OR

- 10 a. Show that the transformation $y_1 = 2x_1 2x_2 x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 x_2 x_3$ is regular, find the inverse transformation. (06 Marks)
 - b. Using power method, find the dominant eigen value and the corresponding eigen vector of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \end{bmatrix}$ taking the initial vector as $[1, 0, 0]^T$. Carry out five iterations.

CMRIT LIBRARY (07 Marks)

c. Reduce the quadratic form $2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into comparing orthogonal transformation. (07 Marks)