

CMR

GBCS SCHEME

17MAT21

Second Semester B.E. Degree Examination, Jan./Feb. 2023 **Engineering Mathematics - II**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a. Solve:
$$(4D^4 - 8D^3 - 7D^2 + 11D + 6) y = 0$$
. (06 Marks)

b. Solve :
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{-x}$$
. (07 Marks)

c. Using the method of undetermined coefficients, solve

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = e^{3x} + \sin x . \tag{67 Marks}$$

2 a. Solve:
$$(D^2 + D + 1)y = 1 - n + x^2$$
. (06 Marks)

a. Solve:
$$(D^2 + D + 1)y = 1 - n + x^2$$
.
b. Solve $(D-1)^2 y = e^x + x$. (06 Marks)

c. Apply the method of variation of parameters to solve
$$(D^2 - 6D + 9)$$
 $y = \frac{e^{3x}}{x^2}$. (07 Marks)

Module-2

3 a. Solve:
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 + \frac{1}{x^2}$$
 (07 Marks)

b. Solve
$$p(p + y) = x(x + y)$$
. (07 Marks)

Obtain the general solution and the singular solution of the following equation as Clairaut's equation: $xp^3 - yp^2 + 1$. (06 Marks)

4 a. Solve:
$$(2x + 3) y'' - (2x + 3) y' - 12y = 6x$$
. (07 Marks)

b. Solve the equation (px - y)(py + x) = 2p by reducing into Clairaut's form taking the substition as $X = x^2$, $Y = y^2$. (07 Marks)

c. Solve:
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
. (06 Marks)

Module-3

a. Form the Partial differential equation by eliminating constants from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$, where α is a known constant. (06 Marks)

b. Solve
$$\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$$
 given that $u = 0$ when $t = 0$ and $\frac{\partial u}{\partial t} = 0$ at $x = 0$. Also show that

$$u \to \sin x \text{ as } t \to \infty.$$
 (07 Marks)

c. Derive one dimensional wave equation in the form

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}.$$
 (07 Marks)

(07 Marks)

OR

- Obtain the partial differential equation from the following equation by eliminating the arbitrary function $Z = f(x) + e^{y} g(x)$. (06 Marks)
 - Solve the equation $\frac{\partial^2 z}{\partial x^2} + z = 0$, given that $Z = e^y$ and $\frac{\partial z}{\partial x} = 1$, when x = 0. (07 Marks)
 - Use the method of separation of variables to solve the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ (07 Marks)

7 a. Evaluate
$$\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$$
. (06 Marks)

Change the order of integration and hence evaluate

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 \, dx \, dy.$$
 (07 Marks)

c. Show that
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} \ d\theta = \pi.$$
 (07 Marks)

8 a. Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} y\sqrt{x^2+y^2} dx dy by changing to polars.

b. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx by changing order of integration.

(06 Marks)

CMRIT LIBRARY

BANGALORE - 560 037$$$

Derive the relation between Beta and Gamma functions as

$$B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}.$$

Find the Laplace transform of

$$\left[\frac{1-e^{-at}}{t}\right] + t^3 \cos h \, 4t. \tag{06 Marks}$$

b. Find the Laplace transform of square wave function defined by
$$f(t) = \begin{cases} 1 & \text{if} & 0 < t < a \\ -1 & \text{if} & a < t < 2a \end{cases} \text{ with period 2a.} \tag{07 Marks}$$

c. Find the inverse Laplace transform of $\frac{1}{s(s^2+1)}$ using Convolution theorem. (07 Marks)

OR

10 a. Express the following function in terms of Unit step function and hence find its Laplace transform

$$f(t) = \begin{cases} t^2 & 0 < t \le 2 \\ 4t & t > 2 \end{cases}$$
 (06 Marks)

- b. Find L⁻¹ $\log \left[\frac{s^2 + 1}{s^2 + 4} \right]$. (07 Marks)
- c. Using Laplace transform solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 4$, given that y(0) = 2, y'(0) = 3. (07 Marks)
