

USN

Internal Assessment Test 3 – December 2022

Sub: Artificial Intelligence and Machine Learning – Set 3 Sub Code: 18CS71 Branch: ISE

Date: 26-12-2022 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 7 A,B,C OBE

Answer any FIVE FULL Questions

MARKS

CO

RBT

 1 Explain the steepest ascent hill climbing search technique with an algorithm.

Comment on its drawbacks and how to overcome these drawbacks

10 CO2 L2

 2 What are AND-OR graphs, explain how the problem reduction (AO*) algorithm

uses AND-OR graphs for the search procedure. Apply the O* algorithm for the

below graph where S is the Initial State and G is the Goal state. The table below

indicates h’ values

10

CO2 L3

 3 Write the algorithm for Best -first search with an example.

Write A* Algorithm.

10

CO2 L1

4 Define Artificial Intelligence and classify the task domains of AI 10 CO3 L1

5

Mention the different approaches used to solve the tic-tac-toe problem. Apply

any two AI techniques for solving tic-tac-toe problem.

10 CO3 L3

6 Explain in detail about Constraint Satisfaction Problem with an example. 10 CO3 L2

7 Consider the following statements. Convert these statements into equivalent

predicate logic form.
i. Marcus was a man.

ii. Marcus was a Pompeian

iii. All Pompeians were Romans

iv. Caesar was a ruler

v. All Romans were either loyal to Caesar or hated him

vi. Everyone is loyal to someone

vii. People only try to assassinate rulers they are not loyal to.

 viii. Marcus tried to assassinate Caesar.

10 CO3 L3

CI CCI HOD

Internal Assessment Test 3 Scheme and Solution – December 2022

Sub: Artificial Intelligence and Machine Learning – Set 3 Sub Code: 18CS71
Branch

:
ISE

MARK

S

CO

RBT

 1

 2

 3

 4

 5

 6

 7

 1

Steepest hill Climbing Search technique (4Marks)

Drawbacks and to Overcome the drawback (6 Marks)

AND-OR graphs (2 Marks)
Problem reduction (AO*) algorithm (3 Marks)
Steps and Path to reach the Goal state (5 Marks)

Algorithm for Best -first search (4 Marks)

Example (2 Marks)

A* Algorithm (4 Marks)

Definition of Artificial Intelligence (2 Marks)

Task Domains of AI (8 Marks)

Definition of production system (2 Marks)

Different classes of production system (4 Marks)

Algorithm for production system (4 Marks)

Constraint Satisfaction Problem (5 Marks)

Example (5 Marks)

Definition of CNF (2 Marks)

Algorithm for converting proposition logic into CNF (4 Marks)

Example – Conversion (4 Marks)

A useful variation on simple hill climbing considers all the moves from
the current state and selects the best one as the next state. This method
is called steepest-ascent hill climbing or gradient search.

Algorithm:

1. Evaluate the initial state. If it is also a goal state then return it and quit. Otherwise

continue with the initial state as the current state.

2. Loop until a solution is found or until a complete iteration produces no change to

current state:

 a. Let SUCC be a state such that any possible successor of the current state will

be better than SUCC.

 b. For each operator that applies to the current state do:

i. Apply the operator and generate a new state.

ii. Evaluate the new state. If it is a goal state, then return it and quit. If

not compare it to SUCC. If it is better, then set SUCC to this state. If it is not better,

leave SUCC alone.
 c. IF the SUCC is better than current state, then set current state to SUCC.

10

CO2

L2

Bothe basic and steepest-ascent hill climbing may fail to find a solution. Either

algorithm may terminate not by finding a goal state but by getting a state from which

no better states can be generated. This will happen if the program has reached a local

maximum, a plateau or a ridge.

A local maximum is a state that is better than all its neighbour’s but it not better than

some other states farther away. At the local maximum, all moves appear to make

things worse. Local maxima are particularly frustrating because they often occur

almost within sight of a solution.

In this case, they are called foothills.

A plateau is a flat area of the search space in which a whole set of neighbouring

states has the same value. In this, it is not possible to determine the best direction in

which to move by making local comparisons.

A ridge is a special kind of maximum. It is an area of the search space
that is higher than surrounding areas and that itself has a slope.

There are some ways of dealing with these problems, although these methods are by

no means guaranteed:

 Backtrack to some earlier node and try going in a different direction. This is

particularly

reasonable if at that node there was another direction that looked as promising or

almost

as promising as the one that was chosen earlier. This is a fairly good way to deal with

local maxima.

 Make a big jump in some direction to try to get to a new section of the search space.

This is a good way of dealing with plateaus.

 Apply two or more rules before doing the test. This corresponds to moving in several

directions at once. This is a good strategy for dealing with ridges.

 2 What are AND-OR graphs, explain how problem reduction (AO*) algorithm

uses AND-OR graphs for search procedure. Apply AO* algorithm for the

below graph where S is the Initial State and G is the Goal state. The table below

indicates h’ values.

AND-OR Graphs:

Useful for representing the solution of problems that can be solved

by decomposing them into a set of smaller problems, all of which

must be then solved.

Some problems are best represented as achieving sub goals, some of

which achieved simultaneously and independently (AND) Up to

now, only dealt with OR options

AO* Algorithm:

1. Initialize the graph to start node

2. Traverse the graph following the current path accumulating nodes

that have not yet been expanded or solved

3. Pick any of these nodes and expand it and if it has no successors

call this value FUTILITY otherwise calculate only f' for each of the

successors.

4. If f' is 0 then mark the node as SOLVED

5. Change the value of f' for the newly created node and let f’ reflect

on its predecessors by back propagation.

10

CO2 L3

6. Wherever possible use the most promising routes and if all

descendants of a node is marked as SOLVED then mark the parent

node as SOLVED.

If starting node is SOLVED or value greater than FUTILITY, stop,

else repeat from 2.

 Current state is S

• f(A)= 3+2 =5, f(B)= 2+4=6, f(C)=1+1=2

• Since, C is having smaller distance compared to other nodes, we have

chosen current state as C.

2.Current State is C

• f(C)= 2+0 = 2

Path = S -> C -> G

 3 Write the algorithm for Best -first search with example

Best-First Search (BFS) is a way of combining the advantages of both depth-first

search and breadth first search into a single method, i.e., is to follow a single path

at a time but switch paths whenever completing path looks more promising than

the current one does.

 The process is to select the most promising of the new nodes we have

generated so far. We then expand the chosen node by using the rules to generate

its successors. If one of them is a solution, then we can quit, else repeat the

process until we search goal.

 In BFS, one move is selected, but others are kept around so that they can be

revisited later if the selected path becomes less promising. This is not the case

steepest ascent climbing.

OR Graphs

 A graph is called OR graph, since each of its branches represents

alternative problems solving path.

To implement such a graph procedure, we will need to use lists of nodes:

1) OPEN: nodes that have been generated and have had the

heuristic function applied to them which have not yet been examined. It is a

priority queue in which the elements with highest priority are those with the most

promising value of the heuristic function.

2) CLOSED: nodes that have already been examined whenever a

new node is generated we need to check whether it has been generated before.

3) A heuristic function f which will estimate the merits of each

node we generate.

Algorithm:

1. Start with OPEN containing just the initial state

2. Until a goal is found or there are no nodes left on OPEN do:

 a. Pick the best node on OPEN

 b. Generate its successors

 c. For each successor do:

i. If it is not been generated before, evaluate it, add it to OPEN and

record its parent.

10

CO2 L1

ii. If it has been generated before, change the parent if this new path

is better than the previous one. In that case update the cost of getting to this node

and to any successors that this node may already have.

Write A* Algorithm

A* algorithm is a best first graph search algorithm that finds a least
cost path from a given

initial node to one goal node. The simplification of Best First Search
is called A* algorithm.

This algorithm uses , functions as well as the lists OPEN and CLOSED.

For many applications, it is convenient to define function as the sum
of two components

that we call g and h’.

• g :
– Measures of the cost of getting from the initial state to the current

node.
– It is not the estimate; it is known to be exact sum of the costs.
• h’ :

– is an estimate of the additional cost of getting from current node to
goal state.

4 Define Artificial Intelligence and classify the task domains of AI

10 CO3 L1

5

Mention the different approaches used to solve the tic-tac-toe problem. Apply

any two AI techniques for solving tic-tac-toe problem.

Program 1:

Data Structures:

• Board: 9 element vector representing the board, with 1-9 for each square.

 1 2 3

 4 5 6

 7 8 9

An element contains the value 0 if it is blank, 1 if it is filled by X, or 2 if it is

filled with a O

• Movetable: A large vector of 19,683 elements (3^9), each element is 9-

element vector.

Algorithm:

1. View the vector as a ternary number. Convert it to a decimal number.

2. Use the computed number as an index into Move-Table and access the

vector stored there.

3. Set the new board to that vector.

Comments:

10 CO3 L3

This program is very efficient in time. It has several disadvantages.

1. A lot of space to store the Move-Table.

2. A lot of work to specify all the entries in the Move-Table.

3. Difficult to extend.

Program 2:

Data Structure: A nine element vector representing the board. But instead of using

0,1 and 2 in each element, we store 2 for blank, 3 for X and 5 for O

Turn: An integer indicating which move of the game is about to be played , 1

indicates the first move, 9 indicates the last move.

Functions:

Make2: returns 5 if the center square is blank. i.e Board[5]=2,Else any other blank

non corner sq 2,4,6 or 8.

Posswin(p): Returns 0 if the player p cannot win on his next move; otherwise it

returns the number of the square that constitutes a winning move.

 If the product is 18 (3x3x2), then X can win. If the product is 50 (5x5x2)

then O can win.

Go(n): Makes a move in the square n. This sets Board[n] to 3 if turn is odd and 5

if turn is even. Also increments turn by 1.

Strategy:

Turn = 1 Go(1)

Turn = 2 If Board[5] is blank, Go(5), else Go(1)

Turn = 3 If Board[9] is blank, Go(9), else Go(3)

Turn = 4 If Posswin(X) 0, then Go(Posswin(X)) else Go(Make2)

Turn = 5

.......

Turn = 9

Program 3:

Board Position :

A structure containing 9-element vector representing the board, a list of board

positions that could result from the next move, and a number representing an

estimate of how likely the board position is to lead to an ultimate win for the

player to move.

Assign rating for the best move.

To decide on the next move, look ahead at the best board positions.

1. If it is a win, give it the highest rating.

2. Otherwise, consider all the moves the opponent could make next. Assume

the opponent will make the move that is worst for us. Assign the rating of that

move to the current node.

3. The best node is then the one with the highest rating.

6 Explain in detail about Constraint Satisfaction Problem with an example.

 Search procedure operates in a space of constraint sets. Initial state contains the

original constraints given in the problem description.

A goal state is any state that has been constrained enough – Cryptarithmetic:

“enough” means that each letter has been assigned a unique numeric value.

Constraint satisfaction is a 2-step process:

10 CO3 L2

Constraints are discovered and propagated as far as possible.

If there is still not a solution, then search begins. A guess about is made and

added as a new constraint.

To apply the constraint satisfaction in a particular problem domain requires the

use of 2 kinds of rules:

Rules that define valid constraint propagation

Rules that suggest guesses when necessary

Example:

7 Consider the following statements. Convert these statements into equivalent

predicate logic form.
i. Marcus was a man.

ii. Marcus was a Pompeian

iii. All Pompeians were Romans

iv. Caesar was a ruler

v. All Romans were either loyal to Caesar or hated him

vi. Everyone is loyal to someone

vii. People only try to assassinate rulers they are not loyal to.
viii. Marcus tried to assassinate Caesar.

Solution:

Converting the given statements into Predicate/Propositional Logic

i. "x : food(x) ® likes (John, x)

ii. food (Apple) ^ food (chicken)

iii. "a : "b: eats (a, b) ^ killed (a) ® food (b)

iv. eats (Bill, Peanuts) ^ alive (Bill)

v. "c : eats (John, c) ® eats (Rita, c)

vi. "d : alive(d) ® ~killed (d)

vii. "e: ~killed(e) ® alive(e)

Conclusion: likes (John, Peanuts)

10 CO3 L3

