| U   | SN [       |                                                                                                                         |                |              | CHE INSTITUTE OF | CM TECHNOLOGY, E | RIT<br>BENGALURU.<br>BY NAAC |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------|----------------|--------------|------------------|------------------|------------------------------|
|     |            | Internal Assessment Test 3 – M                                                                                          | Iarch 2022     |              |                  |                  |                              |
| Sub | <b>)</b> : | Analog and Digital Electronics                                                                                          | Sub Code:      | 21CS33       | Branch:          | ISE              |                              |
| Da  | ite:       | 7/2/2023   Duration:   90 min's   Max Marks:   50                                                                       | Sem/Sec:       | III / A, B a | and C            | OE               | BE .                         |
|     |            | Answer any FIVE FULL Questions                                                                                          |                |              | MARKS            | CO               | RBT                          |
| 1   |            | With a block diagram explain the working of 4 bit paral accumulator                                                     | lel adder witl | 1            | 10               | CO1              | L1                           |
| 2   |            | Construct Mod 5 counter using SR flip flops                                                                             |                |              | 10               | CO4              | L3                           |
| 3   |            | With neat sketch, explain the working principle of SISO shift                                                           | register.      |              | 10               | CO1              | L2                           |
| 4   |            | List the different types of BJT biasing. Derive the emitter voltage ( $V_{CE}$ ) for voltage divider bias circuit using | -              |              |                  | CO1              | L2                           |
| 5   |            | With hysteresis characteristics explain the working Schmitt Trigger circuit.                                            | <u> </u>       |              | 10               | CO4              | L3                           |
| 6   |            | Using a 741 op-amp with a supply of 12V, design invertrigger circuit to have trigger points of ±2V.                     | ting Schmitt   |              | 5                | CO2              | L2                           |
|     | b          | Explain the working of Relaxation oscillator with necess                                                                | sary diagrams  | 3            | 5                | CO1              | L3                           |

Faculty Signature

CCI Signature

HOD Signature

| U   | SN [       |                                                                           |                |              | * CEEEBOOK OF THE PROPERTY OF | CM  | RIT<br>BENGALURU.<br>BY NAAC |
|-----|------------|---------------------------------------------------------------------------|----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------|
|     |            | Internal Assessment Test 3 – N                                            | farch 2022     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                              |
| Sub | <b>)</b> : | Analog and Digital Electronics                                            | Sub Code:      | 21CS33       | Branch:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISE |                              |
| Da  | ite:       | 7/2/2023   Duration:   90 min's   Max Marks:   50                         | Sem/Sec:       | III / A, B a | and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OE  | BE                           |
|     |            | <b>Answer any FIVE FULL Questions</b>                                     |                |              | MARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO  | RBT                          |
| 1   |            | With a block diagram explain the working of 4 bit paral                   | lel adder witl | 1            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO1 | L1                           |
|     |            | accumulator                                                               |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                              |
| 2   |            | Construct Mod 5 counter using SR flip flops                               |                |              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO4 | L3                           |
| 3   |            | With neat sketch, explain the working principle of SISO shift             | register.      |              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO1 | L2                           |
| 4   |            | List the different types of BJT biasing. Derive the                       | expression for | or collector | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO1 | L2                           |
|     |            | emitter voltage (V <sub>CE</sub> ) for voltage divider bias circuit using | ng approxima   | te analysis. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                              |
| 5   |            | With hysteresis characteristics explain the working                       | of Inverting   |              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO4 | L3                           |
|     |            | Schmitt Trigger circuit.                                                  |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                              |
| 6   |            | Using a 741 op-amp with a supply of 12V, design inver                     | ting Schmitt   |              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO2 | L2                           |
|     |            | trigger circuit to have trigger points of $\pm 2V$ .                      |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                              |
|     | b          | Explain the working of Relaxation oscillator with necess                  | sary diagrams  | 3            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO1 | L3                           |
|     |            |                                                                           |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                              |

Faculty Signature CCI Signature HOD Signature

| USN  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | CEFEBOOR    | CM        | RIT       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------|-----------|
|      | Internal Assessment Test III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | –February                                                         | 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |             |           |           |
| Sub: | Analog and Digital Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sub Code:                                                         | 21CS33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bran           | ch: ISE     |           |           |
| ate: | 07/02/2022 Duration: 90 min's Max Marks: 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sem/Sec:                                                          | III / A, B and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С              |             | OE        |           |
|      | Answer any FIVE FULL Questions With a block diagram explain the working of 4 bit parallel a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | MARKS<br>10 | CO<br>CO4 | RBT<br>L2 |
|      | Accumulator Solution:  Parallel Adder with Accumulator: In computer circuits, it is frequently desirable to store on flops (called an accumulator) and add a second number to the accumulator.  One way to build a parallel adder with an accumulator is t shown in the following Figure.  Suppose that the number $X = x_n \dots x_2 x_l$ is stored in the accupy is applied to the full adder inputs, and after the carry has the sum of X and Y appears at the adder outputs. An add adder outputs into the accumulator flip-flops on the rising state of flip-flop $x_l$ will be 1. If $s = 0$ , the next state of flip-following the rising edge of the clock.  Adder Cell with Multiplexer  Adder Cell with Multiplexer | mulator. The propagated signal (Ad) clock edge. lop $x_i$ will be | the result stores the result stores to the address term to the address term and the stores are the stores and the stores are | ared in der as |             |           |           |
|      | Construct Mod 5 counter using SR flip flops  Solution:  1) Excitation table for JK flip flop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 10          | CO4       | L3        |

| $Q_n$ | $Q_{n+1}$ | J | K |
|-------|-----------|---|---|
| 0     | 0         | 0 | X |
| 0     | 1         | 1 | X |
| 1     | 0         | X | 1 |

# 2) Excitation table for counter

| Present state |    | Next | state            |           | Flip f    |    |    | lop Input |                |    |                |
|---------------|----|------|------------------|-----------|-----------|----|----|-----------|----------------|----|----------------|
| Qc            | QB | QA   | Q <sub>C+1</sub> | $Q_{B+1}$ | $Q_{A+1}$ | Jc | Kc | JB        | K <sub>B</sub> | JA | K <sub>a</sub> |
| 0             | 0  | 0    | 0                | 0         | 1         | ×  | 0  | 0         | ×              | 1  | ×              |
| 0             | 0  | 1    | 0                | 1         | 0         | ×  | 1  | 1         | ×              | ×  | 1              |
| 0             | 1  | 0    | 0                | 1         | 1         | ×  | ×  | ×         | 0              | 1  | ×              |
| 0             | 1  | 1    | 1                | 0         | 0         | ×  | ×  | ×         | 1              | ×  | 1              |
| 1             | 0  | 0    | 0                | 0         | 0         | 1  | 0  | 0         | ×              | 0  | ×              |
| 1             | 0  | 1    | ×                | ×         | ×         | ×  | ×  | ×         | ×              | ×  | ×              |
| 1             | 1  | 0    | ×                | ×         | ×         | ×  | ×  | ×         | ×              | ×  | ×              |
| 1             | 1  | 1    | ×                | ×         | ×         | ×  | ×  | ×         | ×              | ×  | ×              |

For Jc

| Q <sub>B</sub> Q <sub>A</sub> | 00 | 01 | 11 | 10 |          |
|-------------------------------|----|----|----|----|----------|
| 0                             | 0  | 0  | 1  | 0  |          |
| 1                             | ×  | ×  | ×  | ×  | □Jc=QBQA |

For Kc

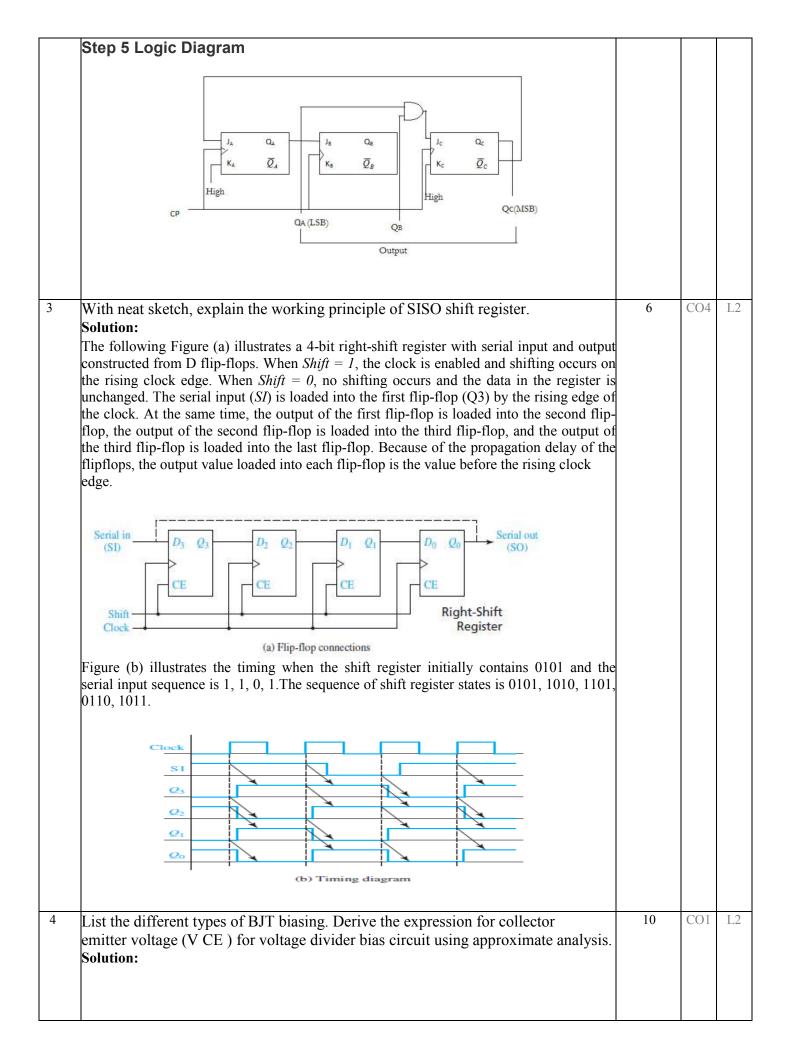
| $Q_BQ_A$ | 00 | 01 | 11 | 10 |             |
|----------|----|----|----|----|-------------|
| Qc       |    |    |    |    |             |
| 0        | ×  | ×  | ×  | ×  |             |
| 1        | 1  | ×  | ×  | X  | $\Box$ Kc=1 |

For J<sub>B</sub>

| Q <sub>B</sub> Q <sub>A</sub> | 00 | 01 | 11 | 10 |                 |
|-------------------------------|----|----|----|----|-----------------|
| 0                             | þ  | ×  | ×  | ×  | $\dashv$        |
| 1                             | ×  | ×  | ×  | ×  | $\Box_{J_B=QA}$ |

For KB

| $Q_BQ_A$ | 00 | 01 | 11 | 10 |                           |
|----------|----|----|----|----|---------------------------|
| 0        | ×  | ×  | 1  | 0  |                           |
| 1        | ×  | ×  | ×  | ×  |                           |
|          |    | ·  |    |    | $\bot$ K <sub>B</sub> =QA |


For JA

| Q <sub>B</sub> Q <sub>A</sub> | 00 | 01 | 11 | 10 |           |
|-------------------------------|----|----|----|----|-----------|
| 0                             | 1  | ×  | ×  | 1  |           |
| 1                             | 0  | ×  | ×  | ×  | IO.       |
|                               |    |    |    |    | $J_A=Q_c$ |

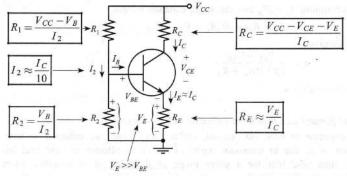
For KA

| Q <sub>B</sub> Q <sub>A</sub> | 00 | 01 | 11 | 10 |
|-------------------------------|----|----|----|----|
| 0                             | ×  | 1  | 1  | ×  |
| 1                             | ×  | ×  | ×  | ×  |

A=1



### BJT BIASING


A transistor (Bipolar Junction Transistor-BJT) is a sandwich of one type of semiconductor (P-type or N-type) between two layers of other type. Transistors are of two types: p-n-p transistor and n-p-n transistor.

There are three distinct regions (hence, terminals) in a transistor: Emitter, Base, and Collector.

There are mainly three types of biasing a transistor: *Base bias* or *Fixed bias*, *Collector-to-Base bias*, *Voltage-divider bias*.

## **VOLTAGE DIVIDER (EMITTER CURRENT) BIAS CIRCUIT:**

Voltage divider bias is the most stable of the three basic transistor biasing circuits. A voltage divider circuit is shown in the following Figure.



There is an emitter resistor  $R_E$  connected in series with Emitter terminal, so that the total dc load in series with the transistor is  $(R_C + R_E)$ . Resistors  $R_1$  and  $R_2$  constitutes a voltage  $V_B$ .

Applying KVL to the loop V<sub>CC</sub>, R<sub>1</sub>, and R<sub>2</sub>, we get;

$$V_{CC} - I_1 R_1 - I_2 R_2 = 0$$
 Or,  $I_1 R_1 + I_2 R_2 = V_{CC}$  (5)

We have;  $I_1 = I_2 + I_B$ 

Voltage divider bias circuits are normally designed to have a voltage divider current  $I_2$  very much greater than transistor base current  $I_B$ . i.e.,  $I_2 >> I_B$ . Hence,  $I_1 \approx I_2$  -------(6)

Using 6 in 5; 
$$I_2R_1 + I_2R_2 = V_{CC}$$
 i.e.,  $I_2(R_1 + R_2) = V_{CC}$  Or,  $I_2 = (V_{CC})/(R_1 + R_2)$ 

 $V_B$  is the voltage across  $R_2$ . i.e.,  $V_B = I_2 R_2$  Or,  $V_B = (V_{CC} * R_2) / (R_1 + R_2)$  $V_E$  is the voltage across  $R_E$ . i.e.,  $V_E = I_E R_E$ 

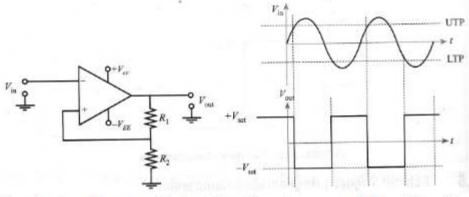
Applying KVL to the base-emitter loop; 
$$V_B - V_{BE} - V_E = 0$$
 i.e.,  $V_{BE} = V_B - V_E$   
Or,  $V_E = V_B - V_{BE}$  i.e.,  $I_E R_E = V_B - V_{BE}$  Hence,  $I_E = (V_B - V_{BE}) / R_E$ 

Applying KVL to the collector-emitter loop; 
$$V_{CC} - I_C R_C - V_{CE} - I_C R_E = 0$$
  $[I_E \approx I_C]$  i.e.,  $V_{CE} = V_{CC} - I_C (R_C + R_E)$ 

With hysteresis characteristics explain the working of Inverting Schmitt Trigger circuit.

Solution:

10


CO2

L2

#### Inverting Schmitt Trigger:

The input voltage  $V_{in}$  is applied to the inverting input terminal and the feedback voltage goes to the non-inverting terminal. This means, the circuit uses positive voltage feedback (i.e., feedback voltage aids the input voltage).

If the input voltage at the inverting terminal is slightly positive than feedback voltage at the non-inverting terminal, the output voltage will be negative (negative saturation,  $-V_{var}$ ); and if the input voltage more negative than the reference feedback voltage, the output will be positive (positive saturation,  $+V_{var}$ ).



Hence, the voltage at the output switches from  $+V_{\text{out}}$  to  $-V_{\text{out}}$  or vice-versa; are called *Upper Trigger Point* (UTP) and *Lower Trigger Point* (LTP). The difference between two trigger points is called *Hysteresis*. The upper and lower trigger points can be written as;

$$UTP = \frac{R_2}{(R_1 + R_2)} e \ V_{sat} \qquad LTP = \frac{R_2}{(R_1 + R_2)} \left( -V_{sat} \right)$$

$$V_{hys} = UTP - LTP = \frac{R_2}{(R_1 + R_2)} e \ V_{sat} - \frac{R_2}{(R_1 + R_2)} e \ (-V_{sat}) = \ 2 \left( \frac{R2}{R_1 + R_2} \right) V_{sat} = 2 \beta V_{sat}$$

$$\beta = \frac{R2}{R_1 + R_2}$$

# <sup>6</sup> A Using a 741 op-amp with a supply of 12V, design inverting Schmitt trigger circuit to have trigger points of $\pm 2V$ .

# Solution:

Using a 741 op-amp with a supply of  $\pm 12$  V, design an inverting schmitt Trigger circuit to have trigger points of  $\pm 2$  V.

05

CO2

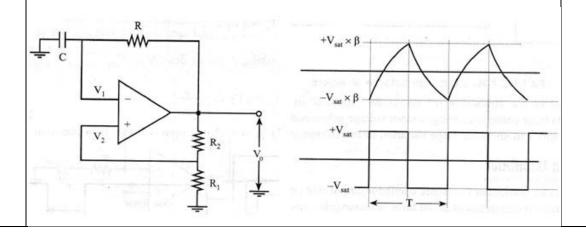
L3

Given: 
$$V_{cc} = \pm 12 \text{ V}$$
,  $LTP = -2 \text{ V}$   $C_2 \ge C_{B(\text{max})}$ ,  $|LTP| = \pm 2 \text{ V}$   
Let  $C_2 = 50 \text{ } \mu\text{A}$ ,  $VR_2 = \text{UTP} = +2 \text{ V}$   
 $R_2 = \frac{V_{R_2}}{I_2} = \frac{2}{50 \times 10^{-6}} = 40 \text{ } k\Omega$   
 $R_3 = 40 \text{ } k\Omega$ 



Explain the working of Relaxation oscillator with necessary diagrams.

Solution:


05

CO2 L2

# RELAXATION OSCILLATOR:

Relaxation oscillator is a non-linear electronic oscillator circuit that generates a continuous non-sinusoidal output signal in the form of rectangular wave, triangular wave or a sawtooth wave. The time period of non-sinusoidal output depends on the charging time of the capacitor connected in the oscillator circuit.

The relaxation oscillator basically contains a feedback loop that has a switching device in the form of transistor, relays, operational amplifiers, comparators, or a tunnel diode that charges a capacitor through a resistance till it reaches a threshold level then discharges it again. The following Figure shows the basic circuit of an Op-Amp based relaxation oscillator.

