
USN

Internal Assessment Test 3 – Feb 2023
Sub: Data Structures and Applications Sub Code: 21CS32 Branch: CSE

Date: 6/02/2023 Duration: 90 mins Max Marks: 50 Sem /
Sec: III(A, B & C) OBE

Answer any FIVE FULL Questions MARK
S

CO RB
T

1 (a) Consider the tree given below:

1. Name the Non-Leaf Nodes …………………[1 Mark]
B C G
2. Find the height of the tree. …………………[1 Mark]
4
3. Find the subtree height rooted at node E. …..[1 Mark]
1
4. Find the Level of Node G. ………………….[1 Mark]
3
5. Name the siblings of C. …………………….[1 Mark]
B
6. Name the Leaf-nodes ………………………[1 Mark]
D E F H I

[06] CO4 L2

1 (b) Show that for any Non-empty Binary tree T, if n0 is the number of leaf nodes and
n2 is the number of nodes of degree 2 then n0=n2+1
Proving the Lemma ……………… [3 Marks]
Writing the conclusion ……………[1 Mark]

First, suppose that the two fork tree has n nodes, then how many edges will it have?

The answer is N-1, because in addition to the root node, each of the remaining nodes

has only one parent node, then the N nodes contribute to the N-1 edge of the tree.

This is the thinking from the bottom up, and from the top down (from the root to the

leaf node) thinking, easy to get each node's degrees and 0*n0 + 1*n1 + 2*n2 is the

number of edges.

So we have the equation N-1 = n1 + 2*n2, replace N with N0 + n1 + n2, get N0 +

n1 + n2-1 = n1 + 2*n2, so there are

[04] CO4 L3

N0 = n2 + 1. The proposition is to be proven.

2 Consider the following tree:

Perform the following:
1. Write a short note on the expression tree. …………….. [1 Mark]

The expression tree is a tree used to represent the various expressions. The tree data
structure is used to represent the expressional statements. In this tree, the internal
node always denotes the operators. The leaf nodes always denote the operands. The
operations are always performed on these operands. The operator present in the
depth of the tree is always at the highest priority.

2. Perform the following Traversals on the given tree and write a Recursive C
code:

a. Pre-Order Traversal + C Function ………………….[1+ 2 Mark]
+ * * B + * C D E

void preorder(struct Tree *temp){
if(temp!=NULL){

printf("\t%d",temp->data);
preorder(temp->lchild);
preorder(temp->rchild);

}

}

b. Post-Order Traversal + C Function …………………[1+ 2 Mark]
B * D C E * + * +
void postorder(struct Tree *temp){

if(temp!=NULL){
postorder(temp->lchild);
postorder(temp->rchild);
printf("\t%d",temp->data);

}

}

c. In-Order Traversal + C Function ……………………[1+ 2 Mark]
* B * C D * E + +
void inorder(struct Tree *temp){

[10] CO4 L3

if(temp!=NULL){
inorder(temp->lchild);
printf("\t%d",temp->data);
inorder(temp->rchild);

}

}

3(a)
For the given tree, Construct a Threaded Binary Tree. Also, point out how the left
threads and right threads are linked in the Threaded Binary Tree.

Threaded Binary Tree representation ……………….. [4 Mark]

Explanation about the left thread and right thread ……. [2 Marks]

[6] CO4 L3

3(b) Write a Recursive C Function to search an element in Binary Search Tree and
display appropriate messages.

C Code for searching an element …………………..[4 Marks]
void search(struct Tree *root, int val){

struct Tree *temp;
temp = root;
if(temp == NULL)

printf("\n Element not found");
else if(val<temp->data)

search(temp->lchild,val);
else if(val>temp->data)

search(temp->rchild,val);
else

printf("\n Element Found!!");
}

[4] CO4 L2

4(a) Define Binary Search Tree. Construct a Binary Search tree for the following
elements: 14, 15, 4, 9, 7, 18, 3, 5, 16, 14, 20, 17, 9.

Definition: ………………………… [2 Marks]

[06] CO2 L3

Construction of tree step by step …..[4 Marks]

4(b) Given the following traversal, Draw a Binary tree.
1. Inorder: BCAEDGHFI

Preorder: ABCDEFGHI

Drawing the tree step by step : …………….. [2.5 Marks]

[05] CO2 L3

2. Postorder: 4 5 2 6 7 8 3 1

Inorder: 4 2 5 1 3 7 6 8

Drawing the tree step by step : …………….. [2.5 Marks]

5(a) Give the importance of the Balance Factor in the AVL tree. For the following
elements 40, 50, 70, 30, 42, 15, 20, 25, 27. Construct an AVL tree and update the
balance factor for every node insertion.

Importance of Balance factor …………………… [1 Mark]
Construction of tree step by step …………………[5 Mark]

SOLUTION
Balance factor of a node in an AVL tree is the difference between the height of the
left subtree and that of the right subtree of that node.

Balance Factor = (Height of Left Subtree - Height of Right Subtree) or (Height of
Right Subtree - Height of Left Subtree)

[06] CO5 L3

The self-balancing property of an AVL tree is maintained by the balance factor. The
value of the balance factor should always be -1, 0, or +1

5 (b) Consider the hash table of size 10. Using the Linear Probing technique insert
the keys 72,27,36,24,63,81,92,101 into the hash table.

Table representation, and hashing ……………………. [4 Marks]

[04]

CO5

L2

6 (a)

For the given Graph,
1. Represent it using an adjacency Matrix and adjacency List
2. Find the Indegree and Outdegree of every Node.

Adjacency Matrix …… [1 Mark]

adjacency List ………………. [1 Mark]
A: B, C, D
B: A, C, E
C: D, F
D: E, F
E: F
F: NIL

[04] CO5 L2

Indegree ……………………………[1 Mark]
For the given Directed graph the Indegree of nodes are as follows:

A 1

B 1

C 2

D 2

E 2

F 3

Outdegree ………………………..[1 Mark]
For the given Directed graph the Out degree of nodes are as follows:

A 3

B 3

C 2

D 2

E 1

F 0

(b) Write a C program to perform the following:
1. Depth First Search (DFS) ……………….. [3 Marks]
2. Breadth First Search (BFS)................. [3 Marks]

Solution:

[06] CO4 L2

#include<stdio.h>
define MAX 10
int adj[][MAX]={{0,1,0,1,0},{1,0,1,1,0},{0,1,0,0,1},{1,1,0,0,1},{0,0,1,1,0}};
void bfs()
{

int visited[MAX]={0};
int start=0;
int r,f,i;
r=f=-1;
int q[MAX];
q[++r]=start;
visited[start]=1;
while(r!=f)
{

start=q[++f];
printf("%d-",start);
for(i=0;i<MAX;i++)
{

if(adj[start][i]==1 && visited[i]==0)
{

q[++r]=i;
visited[i]=1;

}
}

}
}
void dfs(int start)
{

int visited[MAX]={0};
int stack[MAX];
int top=-1,i;
printf("%d->",start);
visited[start]=1;
stack[++top]=start;
while(top!=-1)
{

start=stack[top];
for(i=0;i<MAX;i++)
{

if(adj[start][i] && visited[i]==0)
{

stack[++top]=i;
printf("%d->",i);
visited[i]=1;
break;

}
}
if(i==MAX)
top--;

}
}

int main()

{
printf("BFS:");
bfs();
printf("\nDFS:");
dfs(0);
return 0;
}

CI CCI HOD

PO Mapping

Course Outcomes

Mod
ules

cover
ed

P
O
1

P
O
2

P
O
3

P
O
4

P
O
5

P
O
6

P
O
7

P
O
8

P
O
9

P
O
1
0

P
O
1
1

P
O
1
2

P
S
O
1

P
S
O
2

P
S
O
3

P
S
O
4

CO1

CO2

CO3

CO4

CO5

COGNITIVE
LEVEL REVISED BLOOMS TAXONOMY KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,
when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,
discuss, extend

L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,
change, classify, experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,
infer.

L5 Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,
discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) CORRELATION
LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation
PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2 Moderate/
Medium

PO4 Conduct investigations of
complex problems PO10 Communication 3 Substantial/

High
PO5 Modern tool usage PO11 Project management and finance
PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies
PSO2 Design and develop secure, parallel, distributed, networked, and digital systems
PSO3 Apply software engineering methods to design, develop, test and manage software systems.
PSO4 Develop intelligent applications for business and industry

