

Internal Assessment Test III–Feb 2023

Answer key

Sub: Data Structures and Applications SubCode: 21CS32 Branch: ISE

Date: 6.2.2023 Duration: 90min’s MaxMarks: 50 Sem/Sec: III A, B &C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a For the given expression, ((a+b)-(c*d))%((e^f)/(g-h)), construct the binary tree.

Find out the corresponding prefix and postfix expression.

Prefix:%-+ab*cd/^ef-gh

Postfix:ab+cd*-df^gh-/%

6 CO4 L2

1b Define expression tree. Write down the expression that it represents:

expression tree :
The expression tree is a binary tree in which each internal node corresponds to

the operator and each leaf node corresponds to the operand

(a/b)+(c*a)^(f%g)/(h-i)

4 CO4 L1

2 What are the advantages of threaded binary tree over a binary tree?. What do

you mean by a thread? Explain the concepts of one way and two way

threading. Construct a double threaded tree for the given tree:

10 CO4 L2

Solution:

In a Threaded Binary Tree, the nodes will store the in-order
predecessor/successor instead of storing NULL in the left/right child
pointers.
So the basic idea of a threaded binary tree is that for the nodes whose right
pointer is null, we store the in-order successor of the node (if-exists), and
for the nodes whose left pointer is null, we store the in-order predecessor
of the node(if-exists).
One thing to note is that the leftmost and the rightmost child pointer of a
tree always points to null as their in-order predecessor and successor do
not exist.

Types of Threaded Binary tree
There are two types of Threaded Binary Trees:
 Single-Threaded Binary Tree
 Double-Threaded Binary Tree

1. Single-Threaded Binary Tree

In this type, if a node has a right null pointer, then this right pointer is
threaded towards the in-order successor’s node if it exists.

Node Structure of Single-Threaded Binary Trees: The structure of a
node in a binary threaded tree is quite similar to that of a binary tree, but
with some modifications. In threaded binary trees, we need to use extra
boolean variables in the node structure. For single-threaded binary trees,
we use only the rightThread variable.

struct Node{

 int value;

 Node* left;

 Node* right;

 bool rightThread;

 }

The following diagram depicts an example of a Single-Threaded Binary Tree.
Dotted lines represent threads.

2. Double-Threaded Binary Tree
In this type, the left null pointer of a node is made to point towards the in-
order predecessor node and the right null pointer is made to point towards
the in-order successor node.
Node Structure of Double-Threaded Binary Trees: For the double-
threaded binary tree, we use two boolean
variables: rightThread and leftThread
struct Node{

 int value;

 Node* left;

 Node* right;

 bool rightThread;

 bool leftThread;

 }

Advantages of Threaded Binary Tree
Let’s discuss some advantages of a Threaded Binary tree.
o No need for stacks or recursion: Unlike binary trees, threaded binary trees

do not require a stack or recursion for their traversal.
o Optimal memory usage: Another advantage of threaded binary tree data

structure is that it decreases memory wastage. In normal binary trees,
whenever a node’s left/right pointer is NULL, memory is wasted. But with

threaded binary trees, we are overcoming this problem by storing its inorder
predecessor/successor.

o Time complexity: In-order traversal in a threaded binary tree is fast because
we get the next node in O(1) time than a normal binary tree that takes
O(Height). But insertion and deletion operations take more time for the
threaded binary tree.

o Backward traversal: In a double-threaded binary tree, we can even do a
backward traversal.

Disadvantages of Threaded Binary tree
Let’s discuss some disadvantages that might create a problem for a
programmer using this.
o Complicated insertion and deletion: By storing the inorder predecessor/

successor for the node with a null left/right pointer, we make the insertion
and deletion of a node more time-consuming and a highly complex process.

o Extra memory usage: We use additional memory in the form
of rightThread and leftThread variables to distinguish between a thread from
an ordinary link. (However, there are more efficient methods to differentiate
between a thread and an ordinary

o

3 Discuss the following i) removal of nodes from BST

 ii)searching for a key in BST with C function

CODE:

struct node *delete (struct node *root, int key)

{

 if (root == NULL)

 {

 return root;

 }

 if (key < root->data)

 {

 root->left=delete (root->left, key);

 }

 else if (key > root->data)

 {

 root->right=delete (root->right, key);

 }

 else

 {

 struct node *temp;

 if (root->left == NULL&& root->right == NULL)

 {

 temp=root;

 root=NULL;

 free(temp);

 }

 else if (root->left == NULL)

 {

 temp = root;

 root=root->right;

 free(temp);

 }

 else if (root->right == NULL)

 {

10 CO4 L3

 temp = root;

 root=root->left;

 free(temp);

 }

 else

 {

 temp = smallest_node(root->right);

 root->data = temp->data;

 root->right = delete (root->right, temp->data);

 }

 }

 return root;

 }

// search the given key node in BST

int search(int key)

{

 struct node *temp = root;

 while (temp != NULL)

 {

 if (key == temp->data)

 {

 return 1;

 }

 else if (key > temp->data)

 {

 temp = temp->right;

 }

 else

 {

 temp = temp->left;

 }

 }

 return 0;

}

2) Node to be deleted has only one child: Copy the child to the
node and delete the child

3) Node to be deleted has two children: Find inorder successor of
the node. Copy contents of the inorder successor to the node and
delete the inorder successor.
Note: Inorder predecessor can also be used.

4a Construct a binary tree from the traversal order given below:

POSTORDER D F E B G J L K H C A

INORDER D B F E A G C L J H K

Solution:

4 CO4 L2

4b

Describe the process of construction of BST with an example and a C routine.

Solution:

A binary Search Tree is a special type of binary tree data structure
that has the following properties:

 The left subtree of a node contains only nodes with keys lesser
than the node’s key.

 The right subtree of a node contains only nodes with keys
greater than the node’s key.

 The left and right subtree each must also be a binary search
tree.

Insert a value in a Binary Search Tree:

A new key is always inserted at the leaf by maintaining the property
of the binary search tree. We start searching for a key from the root
until we hit a leaf node. Once a leaf node is found, the new node is
added as a child of the leaf node. The below steps are followed
while we try to insert a node into a binary search tree:

 Check the value to be inserted (say X) with the value of the
current node (say val) we are in:

 If X is less than val move to the left subtree.
 Otherwise, move to the right subtree.

 Once the leaf node is reached, insert X to its right or left based
on the relation between X and the leaf node’s value.

6

CO4 L3

Source Code:

struct node *create_node(int data)

{

 struct node *new_node = (struct node *)malloc(sizeof(struct node));

 if (new_node == NULL)

 {

 printf("\nMemory for new node can't be allocated");

 return NULL;

 }

 new_node->data = data;

 new_node->left = NULL;

 new_node->right = NULL;

 return new_node;

}

// inserts the data in the BST

void insert(int data)

{

 struct node *new_node = create_node(data);

 if (new_node != NULL)

 {

 // if the root is empty then make a new node as the root node

 if (root == NULL)

 {

 root = new_node;

 printf("\n* node having data %d was inserted\n", data);

 return;

 }

 struct node *temp = root;

 struct node *prev = NULL;

 // traverse through the BST to get the correct position for insertion

 while (temp != NULL)

 {

 prev = temp;

 if (data > temp->data)

 {

 temp = temp->right;

 }

 else

 {

 temp = temp->left;

 }

 }

 // found the last node where the new node should insert

 if (data > prev->data)

 {

 prev->right = new_node;

 }

 else

 {

 prev->left = new_node;

 }

 printf("\n* node having data %d was inserted\n", data);

 }

}

5

Define header list. Explain its types with diagram. Mention the two properties of

circular header lists. Write and explain the algorithm to traverse a circular header

lists.

Solution:

10

CO3 L2

6 Write short notes on i) Sparse Matrix representation using Header Lists

Solution:

10 CO3 L3

 ii)Addition of two polynomials.

Solution:

