Internal Assessment Test |11-Feb 2023
Answer key

Sub:

Data Structures and Applications SubCode: | 21CS32 ‘ Branch: ‘ ISE

Date:

6.2.2023 | Duration: | 90min’s | MaxMarks: |50 | Sem/Sec: | Il A, B &C

OBE

Answer any FIVE FULL Questions

MARKS

CO

RBT

la

For the given expression, ((a+b)-(c*d))%((e™f)/(g-h)), construct the binary tree.
Find out the corresponding prefix and postfix expression.

Prefix:%-+ab*cd/"ef-gh
Postfix:ab+cd*-df*gh-/%

6

CO4

L2

1b

Define expression tree. Write down the expression that it represents:

;) G
@ @d@%

expression tree :

The expression tree is a binary tree in which each internal node corresponds to
the operator and each leaf node corresponds to the operand
(a/b)+(c*a)(f%qg)/(h-i)

CO4

L1

What are the advantages of threaded binary tree over a binary tree?. What do
you mean by a thread? Explain the concepts of one way and two way
threading. Construct a double threaded tree for the given tree:

10

CO4

L2

Solution:

In a Threaded Binary Tree, the nodes will store the in-order
predecessor/successor instead of storing NULL in the left/right child
pointers.

So the basic idea of a threaded binary tree is that for the nodes whose right
pointer is null, we store the in-order successor of the node (if-exists), and
for the nodes whose left pointer is null, we store the in-order predecessor
of the node(if-exists).

One thing to note is that the leftmost and the rightmost child pointer of a
tree always points to null as their in-order predecessor and successor do
not exist.

Types of Threaded Binary tree
There are two types of Threaded Binary Trees:

« Single-Threaded Binary Tree

« Double-Threaded Binary Tree

1. Single-Threaded Binary Tree

In this type, if a node has a right null pointer, then this right pointer is
threaded towards the in-order successor’s node if it exists.

Node Structure of Single-Threaded Binary Trees: The structure of a
node in a binary threaded tree is quite similar to that of a binary tree, but
with some modifications. In threaded binary trees, we need to use extra
boolean variables in the node structure. For single-threaded binary trees,
we use only the rightThread variable.

struct Node{

int value;

Node* left;
Node* right;
bool rightThread;
¥

The following diagram depicts an example of a Single-Threaded Binary Tree.

Dotted lines represent threads.
Single Threaded
Binary Tree p i

2. Double-Threaded Binary Tree

In this type, the left null pointer of a node is made to point towards the in-
order predecessor node and the right null pointer is made to point towards
the in-order successor node.

Node Structure of Double-Threaded Binary Trees: For the double-
threaded binary tree, we use two boolean

variables: rightThread and leftThread

struct Node{

int value;

Node* left;

Node* right;

bool rightThread;

bool leftThread,;

}

Double Threaded Binary Tree

Advantages of Threaded Binary Tree

Let’s discuss some advantages of a Threaded Binary tree.
o No need for stacks or recursion: Unlike binary trees, threaded binary trees
do not require a stack or recursion for their traversal.
o Optimal memory usage: Another advantage of threaded binary tree data
structure is that it decreases memory wastage. In normal binary trees,
whenever a node’s left/right pointer is NULL, memory is wasted. But with

@)

o

@)

Disadvantages of Threaded Binary tree

Let’s discuss some disadvantages that might create a problem for a
programmer using this.

threaded binary trees, we are overcoming this problem by storing its inorder
predecessor/successor.

Time complexity: In-order traversal in a threaded binary tree is fast because
we get the next node in O(1) time than a normal binary tree that takes
O(Height). But insertion and deletion operations take more time for the
threaded binary tree.

Backward traversal: In a double-threaded binary tree, we can even do a
backward traversal.

Complicated insertion and deletion: By storing the inorder predecessor/
successor for the node with a null left/right pointer, we make the insertion
and deletion of a node more time-consuming and a highly complex process.
Extra memory usage: We use additional memory in the form

of rightThread and leftThread variables to distinguish between a thread from
an ordinary link. (However, there are more efficient methods to differentiate
between a thread and an ordinary

-~

Discuss the following i) removal of nodes from BST
CODE:
struct node *delete (struct node *root, int key)

if (root == NULL)
if (key < root->data)

else if (key > root->data)

{
¥

else

{

}
else if (root->left == NULL)

ii)searching for a key in BST with C function

return root;

root->left=delete (root->left, key);

root->right=delete (root->right, key);

struct node *temp;
if (root->left == NULL&& root->right == NULL)
{

temp=root;

root=NULL;

free(temp);

{
temp = root;
root=root->right;
free(temp);

else if (root->right == NULL)

{

10

CO4

L3

temp = root;
root=root->left;
free(temp);

¥

else

{

temp = smallest_node(root->right);
root->data = temp->data;
root->right = delete (root->right, temp->data);
}
}
return root;

ks

/ search the given key node in BST
int search(int key)

{

struct node *temp = root;
while (temp = NULL)
if (key == temp->data)

return 1;

}
else if (key > temp->data)

{
temp = temp->right;

ky

else

{

temp = temp->left;
}
}

return O;

by

1) Node to be deleted is the leaf: Simply remove it from the tree.

50 50
/| delete(20) /|
30 70 —> 30 70
i I I/
20 40 60 80 40 60 80

2) Node to be deleted has only one child: Copy the child to the
node and delete the child

50 50

/ | delete(30) /|
30 70 —> 40 70

| /1 /|
40 60 80 60 80

3) Node to be deleted has two children: Find inorder successor of
the node. Copy contents of the inorder successor to the node and
delete the inorder successor.

Note: Inorder predecessor can also be used.

50 60
fiil delete(50) / |
40 70 ——> 40 70

/| |

60 80 80

4a

Construct a binary tree from the traversal order given below:
POSTORDER |D|F |E |B/|G|J |L |[K|/H |C
INORDER DIB|F |[EFIA|G|C |L|J |H

>

Solution:

CO4

L2

4b

Describe the process of construction of BST with an example and a C routine.

Solution:

A binary Search Tree is a special type of binary tree data structure
that has the following properties:

» The left subtree of a node contains only nodes with keys lesser
than the node’s key.

o The right subtree of a node contains only nodes with keys
greater than the node’s key.

o The left and right subtree each must also be a binary search
tree.

Insert a value in a Binary Search Tree:

A new key is always inserted at the leaf by maintaining the property
of the binary search tree. We start searching for a key from the root
until we hit a leaf node. Once a leaf node is found, the new node is
added as a child of the leaf node. The below steps are followed
while we try to insert a node into a binary search tree:

o Check the value to be inserted (say X) with the value of the
current node (say val) we are in:
o If X is less than val move to the left subtree.
« Otherwise, move to the right subtree.
» Once the leaf node is reached, insert X to its right or left based
on the relation between X and the leaf node’s value.

CO4

L3

100 100

insert 40
20 500 » 20 500

10 30 10 30

40

Source Code:
struct node *create_node(int data)

{

struct node *new_node = (struct node *)malloc(sizeof(struct node));
if (new_node == NULL)

printf(*\nMemory for new node can't be allocated");
return NULL;

}

new_node->data = data;
new_node->left = NULL;
new_node->right = NULL;

return new_node;

by

[inserts the data in the BST
void insert(int data)

{

struct node *new_node = create_node(data);

if (new_node '= NULL)
{
/I if the root is empty then make a new node as the root node
if (root == NULL)
{
root = new_node;
printf("\n* node having data %d was inserted\n", data);
return;

¥

struct node *temp = root;
struct node *prev = NULL;

/I traverse through the BST to get the correct position for insertion
while (temp = NULL)
{

prev = temp;
if (data > temp->data)
{

temp = temp->right;

¥

else

{

temp = temp->left;
}
}

// found the last node where the new node should insert
if (data > prev->data)

{

prev->right = new_node;

¥

else

{

prev->left = new_node;

}

printf(*\n* node having data %d was inserted\n", data);

Define header list. Explain its types with diagram. Mention the two properties of
circular header lists. Write and explain the algorithm to traverse a circular header
lists.

Solution:

HEADER LINKED LISTS

A header linked list is a special type of linked list which contains a header node at the beginning

of the list, So, in a header linked list, start will not point to the first node of the list but stagt will
contain the address of the header node, The following are the two variants of a header linked list:

o Grounded header linked list which stores suiL m the next field of the last node

o Circular header linked list which stores the address of the header node in the next field of
the last node. Here, the header node will denote the end of the list

Look at Fig. 6.65 which shows both the types of header linked lists.

Header node

HE RAE AR BE DNE OE. O8N

STARY

Header node

EERNE e DE N O N

4 STaRT |

10

CO3

L2

struct node *display(struct node *start)
{
struct node *ptr;
ptr=start;
while(ptr!=NULL)
{
printf("\t %d", ptr->data);
ptr = ptr->next;
}
return start;

}

\Write short notes on i) Sparse Matrix representation using Header Lists

Solution:

10

COo3

L3

i)Addition of two polynomials.
Solution:

