

Internal Assessment Test - III

Sub:	Analog Electronic Ci	rcuits and Op-A	Amps					Code:	21EE32
Date:	07.02.2023 8.30am – 10am	Duration:	90 mins	Max Marks:	50	Sem:	III	Branch:	EEE

	Answer Any FIVE FULL Questions					
		Marks		BE		
1	Explain the operation of Class B push pull amplifier. Prove that the maximum efficiency of Class B amplifier is 78.5% Solution:		CO CO4	RBT L3		
	Input C I_{h_1} Q_1 I_{c_1} Output C I_{h_2} I_{h_3} I_{h_4} I_{h_5}	2				
	During Positive half cycle - Q_1 conducts and Q_2 is off. $i_L = \frac{N_1}{N_2} i_{c1}$ During Negative half cycle - Q_1 is off and Q_2 conducts. $i_L = -\frac{N_1}{N_2} i_{c2}$ Combining both equations					
	$i_{L} = \begin{cases} \frac{N_{1}}{N_{2}} i_{c_{1}} & \text{for } 0 \leq \omega t \leq \pi \\ -\frac{N_{1}}{N_{2}} i_{c_{2}} & \text{for } \pi \leq \omega t \leq 2\pi \end{cases}$	2				
	$i_L = \frac{N_1}{N_2} \left[i_{c_1} - i_{c_2} \right]$	2				

	$\% \eta = \frac{P_{o(sc)}}{P_{f(dc)}} \times 100\%$ AC output power $P_{o(sc)} = \frac{V_{CE(p)}I_{C(p)}}{2}$ DC input power $P_{f(dc)} = V_{CC}I_{dc}$ average current in each transistor is $\frac{I_{C(p)}}{\pi}$ $\therefore I_{dc} = 2 \text{ [average current in each transistor]}$ $= \frac{2I_{C(p)}}{\pi}$ $P_{f(dc)} = \frac{2}{\pi}V_{CC}I_{C(p)}$	4		
2	With the help of neat diagrams, explain the construction, working and characteristics of N-channel depletion type MOSFET.		CO5	L2
	 Metal Oxide Semiconductor Field Effect Transistor (or) Metal Oxide Silicon Field Effect Transistor. Also called as IGFET (Insulated Gate Field Effect Transistor). Operated in both Depletion mode and Enhancement modes of operation. ✓ D-MOSFET ✓ E-MOSFET 	2		
	Geate SiO ₂ CHANNEL S Source	2		
	 An oxide layer is deposited on the substrate to which the gate terminal is connected. This oxide layer acts as an insulator (sio₂ insulates from the substrate), and hence the MOSFET has another name as IGFET In the construction of MOSFET, a lightly doped substrate, is diffused with a heavily doped region. Depending upon the substrate used, they are called as P-type and N-type MOSFETs. The voltage at gate controls the operation of the MOSFET. In this case, both positive and negative voltages can be applied on the gate as it is insulated from the channel. 	2		
	With negative gate bias voltage, it acts as Depletion mode while with positive gate bias voltage it acts as an Enhancement mode . Transfer characteristics define the change in the value of V_{DS} with the change in I_D and V_{GS} in both depletion and enhancement modes $V_{DS} = V_{DS} = $	2		

1	Symbol of N-Channel D-MOSFET			
	G S	2		
3	A series fed Class A amplifier operates from dc source and applied sinusoidal input signal generates peak base current 9mA, Calculate I_{CQ} , V_{CEQ} , P_{dc} , P_{ac} and efficiency. Given values are $R_B = 1.5 \text{K}\Omega$, $R_L = 16\Omega$, $\beta = 50$, $V_{BE} = 0.7 \text{V}$, $V_{CC} = 20 \text{V}$.		CO4	L3
	Solution:			
	IB = VCC-VBE = 20-0.7 = 12.8mA.			
	Ica = BIB = 50×12-8= 640mA.	2		
	VCER = VCC - ICXRL = 20-(640×162) = 9.76V.	2		
	Pac = Vcc × Ica = 20 × 640 = 12800 mW.	2		
	Pac = (ICD) 2RL			
	ICP = BI8P = SOX9 = 450MA.			
	Pac = (450)^2(162) = 1620 mw.	2		
	$7.2 = \frac{Pac}{Pdc} \times 100 = \frac{1620}{12800} \times 100 = 12.66\%$	2		
4	Explain the 3 Op-Amp instrumentation amplifier and derive the expression for output voltage.		CO6	L2
	Solution:			
	Instrumentation amplifier is a high gain differential amplifier with high CMRR value and also allows to adjust the gain of the amplifier circuit without having to change more than one resistor value. The op-amps A1 & A2 are the non-inverting amplifier forming the first stage of the Instrumentation Amplifier. The op-amp A3 is the normal difference amplifier forming the output stage of the	2		
	Instrumentation Amplifier.			
	Instrumentation Amplifier.	2		
	R_1 R_1 R_2 R_3 R_4 R_5 R_2 R_2	2		

	Applying Ohm's law between the nodes E and F we get,			
	$I = \frac{V_{o1} - V_{o2}}{R_{f1} + R_{G} + R_{f2}}$	2		
	Let $R_{f1} = R_{f2} = R_f$			
	$\therefore \qquad I = \frac{V_{o1} - V_{o2}}{2R_f + R_G}$			
	Now from the observation of nodes G and H,			
	$I = \frac{V_G - V_H}{R_G} = \frac{V_1 - V_2}{R_G}$			
	Equating the two equations (1.30.4) and (1.30.5),			
	$\frac{V_{o1} - V_{o2}}{2R_f + R_G} = \frac{V_2 - V_1}{R_G}$			
	$\frac{V_{02} - V_{01}}{2 R_f + R_G} = \frac{V_1 - V_2}{R_G}$			
	$V_{o2} - V_{o1} = \frac{(2 R_f + R_G) (V_2 - V_1)}{R_G}$			
	Substituting the $V_{02} - V_{01}$, in the equation (1.30.1),			
	$V_o = \frac{R_2}{R_1} \cdot \left[\frac{2R_f + R_G}{R_G} \right] (V_2 - V_1)$	3		
	$V_o = \frac{R_2}{R_1} \cdot \left(1 + \frac{2R_f}{R_G}\right) (V_2 - V_1)$			
5	Design a first order low pass Butterworth filter at a cutoff frequency of 1KHz with pass band gain of 2 and also draw its circuit diagram.		CO6	L6
	Solution:			
	Solution: Step 1: Cut-off frequency f _H = 1 kHz	2		
	Step 2: Choose $C = 0.001 \mu F$	2		
	Step 3: $f_H = \frac{1}{2\pi RC}$ i.e. $R = \frac{1}{2\pi \times 0.001 \times 10^{-6} \times 1 \times 10^{3}}$	2		
	$\therefore \qquad R = 159.15 \text{ k}\Omega \text{ (Use } 150 \text{ k}\Omega)$ $R_{\text{t}} = 159.15 \text{ k}\Omega \text{ (Use } 150 \text{ k}\Omega)$			
	Step 4: $A_F = 2$ but $A_F = 1 + \frac{R_f}{R_1}$	2		
	$\therefore \frac{R_f}{R_1} = 1 \text{ i.e. } R_f = R_1$ $\text{Choose } R_f = R_1 = 10 \text{ k}\Omega$ $\text{The designed circuit is shown in the}$	2		
	Choose $R_f = R_1 = 10 \text{ k}\Omega$ The designed circuit is shown in the	_		
6	Explain the op-amp series voltage regulator with neat circuit diagram. Define Line regulation and Load regulation with respect to voltage regulator.		CO6	L2
	Solution:			
	V _{in o} Control element Regulated Control signal Corcuit	3		
	Reference Comparator circuit Feedback signal			

The unregulated d.c. voltage is the input to the circuit.		
The control element, controls the amount of the input voltage, that gets to the output. The sampling circuit provides the necessary feedback signal. The comparator circuit compares the feedback with the reference voltage to generate the appropriate control signal.	3	
For example, if the load voltage tries to increase the comparator generates a control signal based on the feedback information. This control signal causes the control element to decrease the amount of the output voltage. Thus the output voltage is maintained		
Constant.		
Two basic categories of voltage regulation are:		
♦Line regulation and		
♦Load regulation		
The purpose of line regulation is to maintain a constant output voltage when the input voltage changes.	2	
The number of lead regulation is to maintain a nearly constant output value when		
The purpose of load regulation is to maintain a nearly constant output voltage when the load varies	2	