

INTERNAL ASSESSMENT TEST – I

Answer any 5 full questions

Solution.

Q1. Frequency analysis of discrete-time signals is usually and most conveniently performed on a digital signal processor which may be a general-purpose digital computer or specially designed digital hardware. To perform frequency analysis on a discrete-time signal $x(n)$ we convert that time-domain sequence into an equivalent frequency-domain representation. We know that such a representation is given by the Fourier transform $X(\omega)$ of the sequence $x(n)$. However $X(\omega)$ is a continuous function of frequency and therefore it is not a computationally convenient representation of the sequence $x(n)$. So we consider the representation oi a sequence $x(n)$ by samples of its spectrum $X(\omega)$.

The FT of DT aperiodic signal is represented by $X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$

• Suppose that we sample $X(\omega)$ periodically in frequency domain at a spacing of $\delta \omega$ between two successive samples .

- Since $X(\omega)$ is periodic with period 2π , only samples in period 0 to 2π are necessary. Replacing ω by $\omega_k = \frac{2\pi k}{N}$
- \boldsymbol{N} • $X(\omega_k) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\frac{2\pi k}{N}n}$
- $X\left(\frac{2\pi k}{N}\right)$ $\left(\frac{\pi k}{N}\right) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\frac{2\pi k}{N}n}$
- The summation can be divided in to infinite number of summations with N terms in each summation
- $X\left(\frac{2\pi k}{N}\right)$ $\left(\frac{\pi k}{N}\right) = \dots + \sum_{n=-N}^{-1} x(n) e^{-j\frac{2\pi k}{N}n} + \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n} + \sum_{n=N}^{2N-1} x(n) e^{-j\frac{2\pi k}{N}n} + \dots$

•
$$
X\left(\frac{2\pi k}{N}\right) = \sum_{l=-\infty}^{\infty} \sum_{n=l}^{l} N+N-1} \chi(n) e^{-j\frac{2\pi k}{N}n}
$$
 Replace *n* by *n-l*

•
$$
X\left(\frac{2\pi k}{N}\right) = \sum_{l=-\infty}^{\infty} \sum_{n=0}^{N-1} x(n-lN) e^{-j\frac{2\pi k}{N}(n-lN)}
$$

•
$$
X\left(\frac{2\pi k}{N}\right) = \sum_{l=-\infty}^{\infty} \sum_{n=0}^{N-1} x(n-lN) e^{-j\frac{2\pi k}{N}n} \quad \because e^{j\frac{2\pi k}{N}lN} = 1
$$

Interchanging the order of summation

•
$$
X\left(\frac{2\pi k}{N}\right) = X(k) = \sum_{n=0}^{N-1} \sum_{l=-\infty}^{\infty} x(n-lN) e^{-j\frac{2\pi k}{N}n}
$$

- Let us define $x_p(n) = \sum_{l=-\infty}^{\infty} x(n lN)$
- $\therefore X(k) = \sum_{n=0}^{N-1} x_p(n) e^{-j\frac{2\pi k}{N}n}$
- Where $x_p(n)$ is periodic extension of $x(n)$ for every N samples for finite duration length sequence $x(n)$ with length L $\leq N$.
- Then $X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n}$ computes the DFT of sequence $x(n)$. The expression obtained by sampling the $X(\omega)$ is called as discrete Fourier transform (DFT)
- $x_p(n)$ can be expanded using FS as $x_p(n) = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi k}{N}}$ $\frac{n\kappa}{N}n$
- With FS coefficients $c_k = \frac{1}{N}$ $\frac{1}{N}\sum_{n=0}^{N-1} x_p(n) e^{-j\frac{2\pi k}{N}n} = \frac{1}{N}$ $\frac{1}{N}X\left(\frac{2\pi k}{N}\right)$ $\frac{n\kappa}{N}$
- Now substituting for c_k in expression of $x_p(n)$. $x_p(n) = \sum_{k=0}^{N-1} \frac{1}{N}$ $\frac{1}{N}X\left(\frac{2\pi k}{N}\right)$ $_{k=0}^{N-1} \frac{1}{N} X \left(\frac{2\pi k}{N}\right) e^{j\frac{2\pi k}{N}}$ $\frac{n}{N}n$
- $x_p(n) = \frac{1}{N}$ $\frac{1}{N}\sum_{k=0}^{N-1}X\left(\frac{2\pi k}{N}\right)$ $_{k=0}^{N-1}X\left(\frac{2\pi k}{N}\right)e^{j\frac{2\pi k}{N}}$ $\frac{n\pi}{N}$ ⁿ Since $x_p(n)$ is periodic extension of $x(n)$. $x(n)$ can be recovered from $x_p(n)$ obtained by above expression if there is no aliasing (L<N) in the time domain.
- Where $x(n)=x_p(n)$ for $0 \le n \le N-1$
- $x(n) = \frac{1}{n}$ $\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi k}{N}}$ $\frac{n\kappa}{N}$ ⁿ This equation computes IDFT of *X*(k).

Q2. Given $x(n)$ =[4,3,2,1], Note to compute 8 point DFT four zeros are padded at the end of given the sequence so $x(n)$ =[4,3,2,1,0,0,0,0]

 $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$ where $W_N = e^{-j\frac{2\pi}{N}}$

For k=0, $X(k) = \sum_{n=0}^{8-1} x(n) W_8^0 = \sum_{n=0}^{7} x(n) = x(0) + x(1) + x(2) + x(3) = 4 + 3 + 2 + 1 = 10$ as samples values from $x(4)$ to $x(7)$ are 0. $X(0) = 10$.

For k=1, $X(1) = \sum_{n=0}^{7} x(n) W_8^n = x(0) W_8^0 + x(1) W_8^1 + x(2) W_8^2 + x(3) W_8^3$ samples values from x(4) to x(7) are θ

$$
W_8^1 = \frac{1}{\sqrt{2}} - \frac{j}{\sqrt{2}}, W_8^2 = -j, W_8^3 = \frac{-1}{\sqrt{2}} - \frac{j}{\sqrt{2}}, W_8^4 = -1, W_8^5 = W_8^{*3}, W_8^6 = W_8^{*2}, W_8^7 = W_8^{*1}
$$

\n
$$
\therefore X(1) = 4 + 3 \left(\frac{1}{\sqrt{2}} - \frac{j}{\sqrt{2}} \right) + 2(-j) + 1 \left(\frac{-1}{\sqrt{2}} - \frac{j}{\sqrt{2}} \right) = 5.5414 - j \cdot 4.828
$$

\nFor k=2, $X(2) = \sum_{n=0}^{7} x(n) W_8^{2n} = x(0) W_8^0 + x(1) W_8^2 + x(2) W_8^4 + x(3) W_8^6$ samples values from x(4) to x(7)
\nare 0

∴ $X(2) = 4+3$ (-j)+2(-1) +1 (j) $= 2 - j2$ For k=3, $X(3) = \sum_{n=0}^{7} x(n) W_8^{3n} = x(0) W_8^0 + x(1) W_8^3 + x(2) W_8^6 + x(3) W_8^9$ samples values from x(4) to x(7) are 0, $W_8^9 = W_8^1$ $\therefore X(3) = 4+3 \left(\frac{-1}{\sqrt{2}} - \frac{j}{\sqrt{2}} \right)$ $\frac{j}{\sqrt{2}}$ +2(j) +1 ($\frac{1}{\sqrt{2}}$ – $\frac{j}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$) <mark>= 2.5858 - j0.8284</mark> For k=4, $X(4) = \sum_{n=0}^{7} x(n) W_8^{4n} = x(0) W_8^0 + x(1) W_8^4 + x(2) W_8^8 + x(3) W_8^{12}$ samples values from $x(4)$ to $x(7)$ are 0, $W_8^8 = W_8^0$, $W_8^{12} = W_8^4$ ∴ $X(4) = 4+3(-1)+2(1) +1(-1) = 2$ For k=5, $X(5) = \sum_{n=0}^{7} x(n) W_8^{5n} = x(0) W_8^{0} + x(1) W_8^{5} + x(2) W_8^{10} + x(3) W_8^{15}$ samples values from x(4) to x(7) are 0, $W_8^{10} = W_8^2$, $W_8^{15} = W_8^7$ $\therefore X(5) = 4+3 \left(\frac{-1}{\sqrt{2}} + \frac{j}{\sqrt{2}} \right)$ $\frac{j}{\sqrt{2}}+2(j)+1\left(\frac{1}{\sqrt{2}}+\frac{j}{\sqrt{2}}\right)$ $\left(\frac{J}{\sqrt{2}}\right)$ = 2.5858 + j0.8284 For k=6, $X(2) = \sum_{n=0}^{7} x(n) W_8^{6n} = x(0) W_8^{0} + x(1) W_8^{6} + x(2) W_8^{12} + x(3) W_8^{18}$ samples values from x(4) to x(7) are 0, $W_8^{12} = W_8^4$, $W_8^{18} = W_8^2$ ∴ $X(2) = 4+3$ $(j)+2(-1) +1$ $(-j) = 2 +j2$ For k=7, $X(7) = \sum_{n=0}^{7} x(n) W_8^{7n} = x(0) W_8^{0} + x(1) W_8^{7} + x(2) W_8^{14} + x(3) W_8^{21}$ samples values from x(4) to x(7) are 0, $W_8^{14} = W_8^6$, $W_8^{21} = W_8^5$ $\therefore X(7) = 4+3 \left(\frac{1}{\sqrt{2}} + \frac{j}{\sqrt{2}} \right)$ $\frac{j}{\sqrt{2}}$ +2(j) +1 ($\frac{-1}{\sqrt{2}}$ + $\frac{j}{\sqrt{2}}$

 $\left(\frac{J}{\sqrt{2}}\right)$ = 5.5414 + j 4.828 $X(k) = \{10\angle0, 7.2545\angle0.7283, 2.8284\angle0.7854, 2.7153\angle0.3100, 2\angle0.2.7153\angle0.312.8284\angle0.7854, 7.2545\angle0.7283\}$

Angles are in radians.

Q3a. To compute the 4-point DFT of $x[n] = [8,4,2,6]$ using matrix method $X = W_{4\times4}x$

 I [0] $X[1]$ $\begin{bmatrix} X[2] \\ X[3] \end{bmatrix} =$ $1 \quad 1 \quad 1 \quad 1$ $1 -j -1 j$ 1 −1 1 −1 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 2 \\ 6 \end{bmatrix}$ 4 2 6 Row of W in to column of x .

 $X[0]=8+4+2+6=20$

 $X[1]=8+4(-j)+2(-1)+6(j)=6+2j$ $X[2]=8+4(-1)+2+6(-1)=0$ $X[3]=8+4(j)+2(-1)+6(-j)=6-2j$

 $X(k) = {20∠0, 6.3245∠0.321, 0∠0, 6.3245∠-0.321}$ Angles are in radians.

Q3.b. To compute the 4-point IDFT of $X[k] = [7.8, -1.65 + j0.9526, -1.65 - j0.9526]$ using matrix method. $x = \frac{1}{3}$ $\frac{1}{3}W^*_{3\times 3}X$ $W_3 =$ $1 \quad 1 \quad 1$ 1 W_3^1 W_3^2 1 W_3^1 W_3^2 W_{3}^{3} W_{3}^{3} = $1 \quad 1 \quad 1$ 1 W_3^{*1} W_3^{*2} I

1 W_3^{*2} W_3^{*3} Ŀ $x[0]$ $\begin{bmatrix} x[1] \\ x[2] \end{bmatrix} =$ 1 $\frac{1}{3}$ 1 1 1 1 $-0.5 + j0.866 -0.5 - j0.866$ 1 $1 -0.5 + j0.866 -0.5 - j0.866$

1 $-0.5 - j0.866 -0.5 + j0.866$

1 $-1.65 - j0.866$ $\begin{bmatrix} -1.65 + j0.9526 \\ -1.65 - j0.9526 \end{bmatrix}$ $\therefore x[0] = \frac{1}{2}$ $\frac{1}{3}$ {7.8 – 1.65 + j0.9526 – 1.65 – j0.9526} <mark>=1.5</mark>

$$
\therefore x[1] = \frac{1}{3} \{7.8 + (-0.5 + j0.866) \cdot (-1.65 + j0.9526) + (-0.5 - j0.866) \cdot (-1.65 - j0.9526)\} = 2.6
$$

$$
\therefore x[2] = \frac{1}{3} \{7.8 + (-0.5 - j0.866) \cdot (-1.65 + j0.9526) + (-0.5 + j0.866) \cdot (-1.65 - j0.9526)\} = 3.7
$$

Q.4. Given the first 4 samples of 6-point DFT of a real 6-point sequence

 $X[k] = [21, -3 + j5.1962, -3 + j1.7321, -3]$ the remaining samples are computed by $X[k] = X*[6-k]$

Prepared by Dr Meenakshi R Patil, CMRIT Bangalore Page 4 of 6 $X[4]=X*[6-4]=X*[2]=-3-j1.7321$ and $X[5]=X*[6-5]=X*[1]=-3-j5.1962$.

1) To find x(0) let us use IDFT equation
$$
x(n) = \frac{1}{6}\sum_{k=0}^{6} X(k) e^{i\frac{2\pi}{6}} N(k) e^{i\frac{2\pi}{6}} N(k) e^{i\frac{2\pi}{6}} N(k) + \frac{2\pi}{6} N(k) + \frac{
$$

$$
\therefore \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \frac{1 - e^{j\frac{2\pi N}{N}(i-k)}}{1 - e^{j\frac{2\pi}{N}(i-k)}} = 0 \text{ for } i \neq k \text{ and for } i = k \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(0)} = N \text{ i.e. } N\delta(l-k)
$$
\n
$$
\text{Prepared by Dr Meanakshi R Patil, CMRIT Bangalore} \qquad \text{Page 5 of 6}
$$

Similarly
$$
\sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(i+k)} = \frac{1 - e^{j\frac{2\pi N}{N}(i+k)}}{1 - e^{j\frac{2\pi}{N}(i+k)}} = 0 \text{ for } l \neq -k \text{ and for } l = -k \sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(0)} = N \text{ i.e. } N\delta(l+k)
$$

\n
$$
\therefore X_2(k) = \frac{N}{2} \{\delta(l-k) + \delta(l+k)\}
$$

\nii) $X_3(k) = \frac{1}{2j} \sum_{n=0}^{N-1} \{e^{j\frac{2\pi n}{N}} - e^{-j\frac{2\pi n}{N}}\} e^{-j\frac{2\pi n}{N}} = \frac{1}{2j} \{\sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} - \sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(i+k)}\} \text{ now expressing its closed form of equation}$
\n
$$
\therefore \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \frac{1 - e^{j\frac{2\pi N}{N}(l-k)}}{1 - e^{j\frac{2\pi n}{N}(l-k)}} = 0 \text{ for } l \neq k \text{ and for } l = k \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(0)} = N \text{ i.e. } N\delta(l-k)
$$

\nSimilarly $\sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(i+k)} = \frac{1 - e^{j\frac{2\pi n}{N}(l+k)}}{1 - e^{j\frac{2\pi}{N}(l+k)}} = 0 \text{ for } l \neq -k \text{ and for } l = -k \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(0)} = N \text{ i.e. } N\delta(l+k)$

$$
\therefore X_3(k) = \frac{N}{2j} \{ \delta(l-k) - \delta(l+k) \}
$$

Q.7. By definition of DFT we have $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$ where $W_N = e^{-j\frac{2\pi}{N}}$

- i) If we substitute k=0 in this equation we get $X[0] = \sum_{n=0}^{5} x[n] W_N^0 = \sum_{n=0}^{5} x[n]$. If x(n) is real then X[0] is real and is $\sum_{n=0}^{5} x[n]$
	- ii) For X[N-k] DFt equation shall be written as $X(N k) = \sum_{n=0}^{N-1} x(n) W_N^{n(N-k)}$ $X(N-k) = \sum_{n=0}^{N-1} x(n) W_N^{-nk} W_N^{n} = \sum_{n=0}^{N-1} x(n) W_N^{-nk}$ Now taking conjugate of this equation $X^*(N-k) = (\sum_{n=0}^{N-1} x(n)W_N^{-nk})^*$ as $x^*(n)=x(n)$: $X^*(N-k) = \sum_{n=0}^{N-1} x(n)W_N^{nk}$ $X^*(N - k) = X[k]$

iii) If N is even and if we substitute k=N/2 in DFT equation then we have
$$
X(\frac{N}{2}) = \sum_{n=0}^{N-1} x(n) W_N^{n(N/2)}
$$

$$
\therefore X(\frac{N}{2}) = \sum_{n=0}^{N-1} (-1)^n x(n) \because W_N^{n(N/2)} = e^{-j\frac{2\pi n N}{2N}} = e^{-j\pi} = (-1)^n
$$
So if $y(n)$ is real and N is even then multiplication of $\therefore Y(N) = \sum_{n=0}^{N-1} (-1)^n x(n)$ is real.

So if $x(n)$ is real and N is even then evaluation of ∴ $X\left(\frac{N}{2}\right)$ $\left(\frac{N}{2}\right) = \sum_{n=0}^{N-1} (-1)^n x(n)$ is real.