

INTERNAL ASSESSMENT TEST – I

Sub:	DIGITAL SIGNAL PROCESSING							Code:	18EC52
Date:	04 / 11 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Answer any 5 full questions

		Marks	СО	R B
				T
1	Why is it necessary to perform frequency domain sampling? With a neat diagram, show that sampling of DTFT results in N-point DFT.	[10]	CO2	L3
2	Compute the 8-point DFT of the sequence $x[n] = [4,3,2,1]$. Plot the magnitude spectrum and the phase spectrum.	[10]	CO2	L3
3(a)	Compute the 4-point DFT of $x[n] = [8,4,2,6]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.	[06]	CO2	L2
3(b)	Compute the IDFT of $X[k] = [7.8, -1.65 + j0.9526, -1.65 - j0.9526]$ using matrix method.	[04]	CO2	L2

INTERNAL ASSESSMENT TEST – I

Sub:	DIGITAL SIGNAL PROCESSING							Code:	18EC52
Date:	04 / 11 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Answer any 5 full questions

Answer any 5 Iuli questions						
		Marks	СО	R B T		
1	Why is it necessary to perform frequency domain sampling? With a neat diagram, show that sampling of DTFT results in N-point DFT.	[10]	CO2	L3		
2	Compute the 8-point DFT of the sequence $x[n] = [4,3,2,1]$. Plot the magnitude spectrum and the phase spectrum.	[10]	CO2	L3		
3(a)	Compute the 4-point DFT of $x[n] = [8,4,2,6]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.	[06]	CO2	L2		
3(b)	Compute the IDFT of $X[k] = [7.8, -1.65 + j0.9526, -1.65 - j0.9526]$ using matrix method.	[04]	CO2	L2		

		Marks	CO	R B
4	The first 4 samples of 6-point DFT of a real 6-point sequence are as follows.	[10]	CO2	L3
	X[k] = [21, -3 + j5.1962, -3 + j1.7321, -3]			
	Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$.			
	i) $x[0]$ ii) $x[3]$ iii) $\sum_{n=0}^{5} x[n]$ iv) $\sum_{n=0}^{5} (-1)^n x(n)$			
5	With proof, explain the nature of DFT for the following cases.	[10]	CO2	L2
	i) $x(n)$ is real and circularly even iii) $x(n)$ is imaginary and circularly even iii) $x(n)$ is imaginary and circularly odd iv) $x(n)$ is imaginary and circularly odd			
6	Compute the N-point DFT of the following sequences $^{.2\pi}$.	[10]	CO2	L2
	i. $x_1(n) = e^{j\frac{2\pi}{N}ln}, 0 \le n \le N-1$			
	ii. $x_2(n) = \cos\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$			
	iii. $x_3(n) = \sin\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$			
7	Prove that if $x(n)$ is real, then	[10]	CO2	L2
	i) $X(0)$ is real ii) $X(k) = X^*(N-k)$ iii) $X\left(\frac{N}{2}\right)$ is real for even N			

		Marks	СО	R B T
4	The first 4 samples of 6-point DFT of a real 6-point sequence are as follows.	[10]	CO2	L3
	X[k] = [21, -3 + j5.1962, -3 + j1.7321, -3]			
	Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$.			
	i) $x[0]$ ii) $x[3]$ iii) $\sum_{n=0}^{5} x[n]$ iv) $\sum_{n=0}^{5} (-1)^n x(n)$			
5	With proof, explain the nature of DFT for the following cases.	[10]	CO2	L2
	i) $x(n)$ is real and circularly even iii) $x(n)$ is imaginary and circularly even iii) $x(n)$ is imaginary and circularly odd			
6	Compute the N-point DFT of the following sequences iv. $x_1(n) = e^{j\frac{2\pi}{N}ln}, 0 \le n \le N-1$ v. $x_2(n) = \cos\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$ vi. $x_3(n) = \sin\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$	[10]	CO2	L2
7	Prove that if $x(n)$ is real, then ii) $X(0)$ is real iii) $X(k) = X^*(N-k)$ iii) $X\left(\frac{N}{2}\right)$ is real for even N	[10]	CO2	L2

Scheme Of Evaluation Internal Assessment Test I – Nov 2022

Sub:	DIGITAL SIGNAL PROCESSING							18EC52
Date:	04 / 11 / 2022	Duration: 90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Note: Answer All Questions

Question	Description	Marks		Max
#		Distribution		Marks
1	Why is it necessary to perform frequency domain sampling? With a neat diagram, show that sampling of DTFT results in N-point DFT.		10	10
	Need for frequency domain sampling	2		
	• DTFT	2		
	Periodic nature of sequence	3		
	Final expression	3		
2	Compute the 8-point DFT of the sequence $x[n] = [4,3,2,1]$. Plot the magnitude spectrum and the phase spectrum.		10	10
	 DFT computation Magnitude spectrum Phase spectrum 	8 1 1		
3	Compute the 4-point DFT of $x[n] = [8,4,2,6]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.		10	10
	 DFT computation Magnitude spectrum Phase spectrum 	4 4 2		
4	The first 4 samples of 6-point DFT of a real 6-point sequence are as follows.		10	10
	$X[k] = [21, -3 + j5.1962, -3 + j1.7321, -3]$ Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$. i) $x[0]$ ii) $x[3]$ iii) $\sum_{n=0}^{5} x[n]$ iv) $\sum_{n=0}^{5} (-1)^n x(n)$			

			1	1
	Remaining samples	2		
	• x(0)	2		
	• x(3)	2		
	$\bullet \sum_{n=0}^{5} x[n]$	2		
		2		
5	• $\sum_{n=0}^{5} (-1)^n x(n)$ With proof, explain the nature of DFT for the following cases.		4	10
	i) $x(n)$ is real and circularly even odd ii) $x(n)$ is real and circularly			
	iii) $x(n)$ is imaginary and circularly even iv) $x(n)$ is imaginary and circularly odd			
	 x(n) is real and circularly even x(n) is real and circularly odd x(n) is imaginary and circularly even x(n) is imaginary and circularly odd 	2.5 2.5 2.5 2.5		
6	Compute the N-point DFT of the following sequences		10	10
	i. $x_1(n) = e^{j\frac{2\pi}{N}ln}$, $0 \le n \le N-1$			
	ii. $x_2(n) = \cos\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$			
	iii. $x_3(n) = \sin\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$			
	$\bullet X_1(k)$	3		
	$\bullet X_2(k)$	3		
	$\bullet X_3(k)$	4		
7	Prove that if $x(n)$ is real, then		10	10
	$X(0)$ is real ii) $X(k) = X^*(N-k)$ iii) $X\left(\frac{N}{2}\right)$ is real for even N			
	• <i>X</i> (0) is real	3		
	$\bullet X(k) = X^*(N-k)$	4		
	• $X\left(\frac{N}{2}\right)$ is real for even N	3		

INTERNAL ASSESSMENT TEST – I

Sub:	DIGITAL SIGNAL PROCESSING								18EC52
Date:	04 / 11 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Answer any 5 full questions

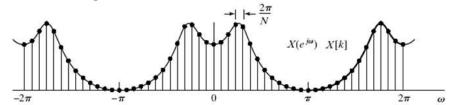
	Answer any 5 full questions			
		Marks	CO	R B T
1	Why is it necessary to perform frequency domain sampling? With a neat diagram, show that sampling of DTFT results in N-point DFT.	[10]	CO2	
2	Compute the 8-point DFT of the sequence $x[n] = [4,3,2,1]$. Plot the magnitude spectrum and the phase spectrum.	[10]	CO2	L3
3(a)	Compute the 4-point DFT of $x[n] = [8,4,2,6]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.	[06]	CO2	L2
3(b)	Compute the IDFT of $X[k] = [7.8, -1.65 + j0.9526, -1.65 - j0.9526]$ using matrix method.	[04]	CO2	L2
4	The first 4 samples of 6-point DFT of a real 6-point sequence are as follows. $X[k] = [21, -3 + j5.1962, -3 + j1.7321, -3]$ Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$. ii) $x[0]$ iii) $\sum_{n=0}^{5} x[n]$ iv) $\sum_{n=0}^{5} (-1)^n x[n]$	[10]	CO2	L3
5	With proof, explain the nature of DFT for the following cases. i) $x(n)$ is real and circularly even ii) $x(n)$ is real and circularly odd iii) $x(n)$ is imaginary and circularly even iv) $x(n)$ is imaginary and circularly odd	[10]	CO2	L2
6	Compute the N-point DFT of the following sequences i. $x_1(n) = e^{j\frac{2\pi}{N}ln}, 0 \le n \le N-1$ ii. $x_2(n) = \cos\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$ iii. $x_3(n) = \sin\left(\frac{2\pi}{N}ln\right), 0 \le n \le N-1$	[10]	CO2	L2
7	Prove that if $x(n)$ is real, then, prove that i) $X(0)$ is real (ii) $X(k)=X^*(N-k)$ (iii) $X(N/2)$ is real for n even.	[10]	CO2	L2

Solution.

Q1. Frequency analysis of discrete-time signals is usually and most conveniently performed on a digital signal processor which may be a general-purpose digital computer or specially designed digital hardware. To perform frequency analysis on a discrete-time signal x(n) we convert that time-domain sequence into an equivalent frequency-domain representation. We know that such a representation is given by the Fourier transform $X(\omega)$ of the sequence x(n). However $X(\omega)$ is a continuous function of frequency and therefore it is not a computationally convenient representation of the sequence x(n). So we consider the representation of a sequence x(n) by samples of its spectrum $X(\omega)$.

The FT of DT aperiodic signal is represented by $X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$

Suppose that we sample $X(\omega)$ periodically in frequency domain at a spacing of $\delta\omega$ between two successive samples.



- Since $X(\omega)$ is periodic with period 2π , only samples in period 0 to 2π are necessary. Replacing ω by $\omega_k = \frac{2\pi k}{N}$
- $X(\omega_k) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\frac{2\pi k}{N}n}$
- $X\left(\frac{2\pi k}{N}\right) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\frac{2\pi k}{N}n}$ The summation can be divided in to infinite number of summations with N terms in each summation
- $X\left(\frac{2\pi k}{N}\right) = \dots + \sum_{n=-N}^{-1} x(n) e^{-j\frac{2\pi k}{N}n} + \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n} + \sum_{n=N}^{2N-1} x(n) e^{-j\frac{2\pi k}{N}n} + \dots$
- $X\left(\frac{2\pi k}{N}\right) = \sum_{l=-\infty}^{\infty} \sum_{n=l}^{lN+N-1} x(n) e^{-j\frac{2\pi k}{N}n}$ Replace n by n-lN
- $X\left(\frac{2\pi k}{N}\right) = \sum_{l=-\infty}^{\infty} \sum_{n=0}^{N-1} x(n-lN) e^{-j\frac{2\pi k}{N}(n-lN)}$
- $X\left(\frac{2\pi k}{N}\right) = \sum_{l=-\infty}^{\infty} \sum_{n=0}^{N-1} x(n-lN) e^{-j\frac{2\pi k}{N}n} : e^{j\frac{2\pi k}{N}lN} = 1$
- Interchanging the order of summation

- $\therefore X(k) = \sum_{n=0}^{N-1} x_p(n) e^{-j\frac{2\pi k}{N}n}$
- Where $x_p(n)$ is periodic extension of x(n) for every N samples for finite duration length sequence x(n) with length L<N.
- Then $X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n}$ computes the DFT of sequence x(n). The expression obtained by sampling the $X(\omega)$ is called as discrete Fourier transform (DFT)
- $x_p(n)$ can be expanded using FS as $x_p(n) = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi k}{N}n}$
- With FS coefficients $c_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p(n) e^{-j\frac{2\pi k}{N}n} = \frac{1}{N} X\left(\frac{2\pi k}{N}\right)$
- Now substituting for c_k in expression of $x_p(n)$. $x_p(n) = \sum_{k=0}^{N-1} \frac{1}{N} X\left(\frac{2\pi k}{N}\right) e^{j\frac{2\pi k}{N}n}$
- $x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X\left(\frac{2\pi k}{N}\right) e^{j\frac{2\pi k}{N}n}$ Since $x_p(n)$ is periodic extension of x(n). x(n) can be recovered from $x_p(n)$ obtained by above expression if there is no aliasing (L<N) in the time domain.
- Where $x(n)=x_n(n)$ for $0 \le n \le N-1$
- $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi k}{N}n}$ This equation computes IDFT of X(k).

Q2. Given x(n)=[4,3,2,1], Note to compute 8 point DFT four zeros are padded at the end of given the sequence so x(n)=[4,3,2,1,0,0,0,0]

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$
 where $W_N = e^{-j\frac{2\pi}{N}}$

For k=0, $X(k) = \sum_{n=0}^{8-1} x(n) W_8^0 = \sum_{n=0}^7 x(n) = x(0) + x(1) + x(2) + x(3) = 4 + 3 + 2 + 1 = 10$ as samples values from x(4) to x(7) are 0. X(0) = 10.

For k=1, $X(1) = \sum_{n=0}^{7} x(n) W_8^n = x(0) W_8^0 + x(1) W_8^1 + x(2) W_8^2 + x(3) W_8^3$ samples values from x(4) to x(7) are

$$W_8^1 = \frac{1}{\sqrt{2}} - \frac{j}{\sqrt{2}}, W_8^2 = -j, W_8^3 = \frac{-1}{\sqrt{2}} - \frac{j}{\sqrt{2}}, W_8^4 = -1, W_8^5 = W_8^{*3}, W_8^6 = W_8^{*2}, W_8^7 = W_8^{*1}$$

$$\therefore X(1) = 4+3 \left(\frac{1}{\sqrt{2}} - \frac{j}{\sqrt{2}}\right) + 2(-j) + 1 \left(\frac{-1}{\sqrt{2}} - \frac{j}{\sqrt{2}}\right) = 5.5414 - j \cdot 4.828$$

are 0

$$X(2) = 4+3(-j)+2(-1)+1(j) = 2-j2$$

are $0, W_8^9 = W_8^1$

$$\therefore X(3) = 4+3\left(\frac{-1}{\sqrt{2}} - \frac{j}{\sqrt{2}}\right) + 2(j) + 1\left(\frac{1}{\sqrt{2}} - \frac{j}{\sqrt{2}}\right) = 2.5858 - j0.8284$$

For k=4, $X(4) = \sum_{n=0}^{7} x(n) W_8^{4n} = x(0) W_8^0 + x(1) W_8^4 + x(2) W_8^8 + x(3) W_8^{12}$ samples values from x(4) to x(7) are $0, W_8^8 = W_8^0, W_8^{12} = W_8^4$

$$\therefore X(4) = 4+3(-1)+2(1)+1(-1) = 2$$

are $0, W_o^{10} = W_o^2, W_o^{15} = W_o^7$

$$\therefore X(5) = 4+3\left(\frac{-1}{\sqrt{2}} + \frac{j}{\sqrt{2}}\right) + 2(j) + 1\left(\frac{1}{\sqrt{2}} + \frac{j}{\sqrt{2}}\right) = 2.5858 + j0.8284$$

For k=6, $X(2) = \sum_{n=0}^{7} x(n) W_8^{6n} = x(0) W_8^{0} + x(1) W_8^{6} + x(2) W_8^{12} + x(3) W_8^{18}$ samples values from x(4) to x(7)

are
$$0, W_8^{12} = W_8^4, W_8^{18} = W_8^2$$

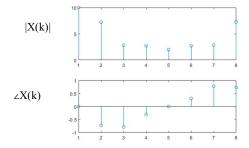
$$\therefore X(2) = 4+3 (j)+2(-1)+1 (-j) = 2+j2$$

 $\therefore X(2) = 4+3 \ (j)+2(-1)+1 \ (-j) = 2+j2$ For k=7, $X(7) = \sum_{n=0}^{7} x(n) \ W_8^{7n} = x(0) \ W_8^0 + x(1) \ W_8^7 + x(2) \ W_8^{14} + x(3) \ W_8^{21}$ samples values from x(4) to x(7)

are
$$0, W_8^{14} = W_8^6, W_8^{21} = W_8^5$$

$$\therefore X(7) = 4+3\left(\frac{1}{\sqrt{2}} + \frac{j}{\sqrt{2}}\right) + 2(j) + 1\left(\frac{-1}{\sqrt{2}} + \frac{j}{\sqrt{2}}\right) = 5.5414 + j + 4.828$$

 $X(k) = \{10 \ge 0, 7.2545 \ge -0.7283, 2.8284 \ge -0.7854, 2.7153 \ge 0.3100, 2 \ge 0, 2.7153 \ge 0.312.8284 \ge 0.7854, 7.2545 \ge 0.7283\}$ Angles are in radians.



Q3a. To compute the 4-point DFT of x[n] = [8,4,2,6] using matrix method $X = W_{4\times4}x$

$$W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & W_4^1 & W_4^2 & W_4^3 \\ 1 & W_4^2 & W_4^4 & W_4^6 \\ 1 & W_4^3 & W_4^6 & W_4^9 \end{bmatrix}$$

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 2 \\ 6 \end{bmatrix}$$
 Row of W in to column of x.

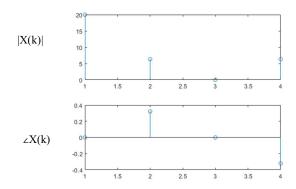
$$X[0]=8+4+2+6=20$$

$$X[1]=8+4(-j)+2(-1)+6(j)=6+2j$$

$$X[2]=8+4(-1)+2+6(-1)=0$$

$$X[3]=8+4(j)+2(-1)+6(-j)=6-2j$$

 $X(k) = \{20 \le 0, 6.3245 \le 0.321, 0 \le 0, 6.3245 \le -0.321\}$ Angles are in radians.



Q3.b. To compute the 4-point IDFT of X[k] = [7.8, -1.65 + j0.9526, -1.65 - j0.9526] using matrix method. $x = \frac{1}{3}W^*_{3\times 3}X$

$$W_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & W_3^1 & W_3^2 \\ 1 & W_3^2 & W_3^3 \end{bmatrix} \quad W *_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & W_3^{*1} & W_3^{*2} \\ 1 & W_3^{*2} & W_3^{*3} \end{bmatrix}$$

$$\begin{bmatrix} x[0] \\ x[1] \\ x[2] \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -0.5 + j0.866 & -0.5 - j0.866 \\ 1 & -0.5 - j0.866 & -0.5 + j0.866 \end{bmatrix} \begin{bmatrix} 7.8 \\ -1.65 + j0.9526 \\ -1.65 - j0.9526 \end{bmatrix}$$

$$\therefore x[0] = \frac{1}{3} \{7.8 - 1.65 + j0.9526 - 1.65 - j0.9526\} = 1.5$$

$$\therefore x[1] = \frac{1}{3} \{7.8 + (-0.5 + j0.866) \cdot (-1.65 + j0.9526) + (-0.5 - j0.866) \cdot (-1.65 - j0.9526)\} = 2.6666 \cdot (-1.65 - j0.9526) = 2.66666 \cdot (-1.65 - j0.9526) = 2.666666 \cdot (-1.65 - j0.9526) = 2.666666 \cdot (-1.65 - j0.9526) = 2.666666 \cdot (-1.65 - j0.9526) = 2.666666666 \cdot (-1.65 - j0.9526) = 2.666666666 \cdot (-1.65 - j0.9526) = 2.666666666000 = 2.6666666000 = 2.666666000$$

$$\therefore x[2] = \frac{1}{3} \{7.8 + (-0.5 - j0.866) \cdot (-1.65 + j0.9526) + (-0.5 + j0.866) \cdot (-1.65 - j0.9526)\} = 3.7$$

Q.4. Given the first 4 samples of 6-point DFT of a real 6-point sequence

$$X[k] = [21, -3 + j5.1962, -3 + j1.7321, -3]$$
 the remaining samples are computed by $X[k] = X^*[6-k]$

$$X[4]=X*[6-4]=X*[2]=\frac{-3-j1.7321}{}$$
 and $X[5]=X*[6-5]=X*[1]=\frac{-3-j5.1962}{}$.

i) To find x(0) let us use IDFT equation
$$x(n) = \frac{1}{6} \sum_{k=0}^{5} X(k) \, e^{j\frac{2\pi k}{6}n}$$
; In this equation if we substitute n=0 we get $x(0) = \frac{1}{6} \sum_{k=0}^{5} X(k) \, e^0$; $= \frac{1}{6} \{X[0] + X[1] + X[2] + X[3] + X[4] + X[5]\}$

ii) Now in IDFT equation if we substitute n=3 we get $x(3) = \frac{1}{6} \sum_{k=0}^{5} X(k) \, e^{j\frac{2\pi k}{6}3}$

ii) Now in IDFT equation if we substitute n=3 we get
$$x(3) = \frac{1}{6} \sum_{k=0}^{5} X(k) e^{j\frac{2\pi k}{6}}$$

$$\therefore x(3) = \frac{1}{6} \sum_{k=0}^{5} X(k) (-1)^k$$

$$\therefore x(3) = \frac{1}{6} \{X[0] - X[1] + X[2] - X[3] + X[4] - X[5] \}$$

$$\therefore x(3) = \frac{1}{6} \{21 + 3 - j5.1962 - 3 + j1.7321 + 3 - 3 - j1.7321 + 3 + j1.7321\} = \frac{24}{6} = \frac{1}{6} =$$

- To find $\sum_{n=0}^{5} x[n]$ let use DFT equation $X(k) = \sum_{n=0}^{5} x(n) e^{-j\frac{2\pi k}{6}n}$ and substitute k=0 in that iii) $X[0] = \sum_{n=0}^{5} x[n] = 21$
- To find $\sum_{n=0}^{5} (-1)^n x[n]$ substitute k=3 in DFT equation

$$\therefore X[3] = \sum_{n=0}^{5} (-1)^n x[n] = -3$$

Q5. We now that DFT
$$x(n) \stackrel{DFT}{\longleftrightarrow} X[k]$$
 and $x((-n))_N \stackrel{DFT}{\longleftrightarrow} X^*[k]$

$$X[k] = DFT\{x(n)\} = \sum_{n=0}^{N-1} x(n) \cos\left(\frac{2\pi}{N}\right) - j \sum_{n=0}^{N-1} x(n) \sin\left(\frac{2\pi nk}{N}\right) \dots (1)$$

$$X^*[k] = DFT\{x((-n))_N\} = \sum_{n=0}^{N-1} x(n) \cos\left(\frac{2\pi nk}{N}\right) + j \sum_{n=0}^{N-1} x(n) \sin\left(\frac{2\pi nk}{N}\right)....(2)$$

i) If
$$x(n)$$
 is real and even then $DFT\{x_e(n)\} = \frac{1}{2}\{DFT\{x(n)\} + DFT\{x\langle (-n)\rangle_N\}\}$

From equation (1) and (2)
$$DFT\{x_e(n)\} = \frac{1}{2} 2 \sum_{n=0}^{N-1} x(n) cos\left(\frac{2\pi nk}{N}\right) = \frac{\sum_{n=0}^{N-1} x(n) cos\left(\frac{2\pi nk}{N}\right)}{2} = \frac{\sum_{n=0}^{N-1} x(n) c$$

ii) If
$$x(n)$$
 is real and odd then $DFT\{x_0(n)\} = \frac{1}{2}\{DFT\{x(n)\} - DFT\{x((-n))_N\}\}$

From equation (1) and (2)
$$DFT\{x_0(n)\} = \frac{1}{2}(-2j)\sum_{n=0}^{N-1}x(n)sin\left(\frac{2\pi nk}{N}\right) = -j\sum_{n=0}^{N-1}x(n)sin\left(\frac{2\pi nk}{N}\right)$$

iii) If
$$x(n)$$
 is purely imaginary and even then $DFT\{x_e(n)\} = \frac{1}{2}\{DFT\{x(n)\} + DFT\{x((-n))_N\}\}$

From equation (1) and (2)
$$DFT\{x_e(n)\} = \frac{1}{2} 2 \sum_{n=0}^{N-1} jx(n) cos\left(\frac{2\pi nk}{N}\right) = \frac{\sum_{n=0}^{N-1} jx(n) cos\left(\frac{2\pi nk}{N}\right)}{2\pi i}$$

iv) If
$$x(n)$$
 is purely imaginary and odd then $DFT\{x_0(n)\} = \frac{1}{2}\{DFT\{x(n)\} - DFT\{x((-n))_N\}\}$

From equation (1) and (2)
$$DFT\{x_0(n)\} = \frac{1}{2}(-2j)\sum_{n=0}^{N-1} jx(n) sin\left(\frac{2\pi nk}{N}\right) = \frac{\sum_{n=0}^{N-1} x(n) sin\left(\frac{2\pi nk}{N}\right)}{n}$$

Q.6 By definition of DFT we have
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$
 where $W_N = e^{-j\frac{2\pi}{N}}$

Q.6 By definition of DFT we have
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$
 where $W_N = e^{-j\frac{2\pi n}{N}}$
i) $X_1(k) = \sum_{n=0}^{N-1} e^{j\frac{2\pi n n}{N}} e^{-j\frac{2\pi n n}{N}} = \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)}$ now expressing its closed form of equation

$$\therefore X_1(k) = \frac{1 - e^{j\frac{2\pi N}{N}(l-k)}}{1 - e^{j\frac{2\pi}{N}(l-k)}} = 0 \text{ for } l \neq k \text{ and for } l = k \therefore X_1(k) = \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(0)} = N$$

Prepared by Dr Meenakshi R Patil, CMRIT Bangalore

$$X_1(k)=N\delta(l-k)$$

ii)
$$X_2(k) = \frac{1}{2} \sum_{n=0}^{N-1} \left\{ e^{j\frac{2\pi ln}{N}} + e^{-j\frac{2\pi ln}{N}} \right\} e^{-j\frac{2\pi nk}{N}} = \frac{1}{2} \left\{ \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} + \sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(i+k)} \right\}$$
 now expressing its closed form of equation

$$\therefore \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \frac{1 - e^{j\frac{2\pi N}{N}(i-k)}}{1 - e^{j\frac{2\pi n}{N}(i-k)}} = 0 \text{ for } l \neq k \text{ and for } l = k \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(0)} = N \text{ i.e. } N\delta(l-k)$$

Page 5 of 6

Similarly
$$\sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(i+k)} = \frac{1-e^{j\frac{2\pi N}{N}(i+k)}}{1-e^{j\frac{2\pi}{N}(i+k)}} = 0$$
 for $l \neq -k$ and for $l = -k$ $\sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(0)} = N$ i.e. $N\delta(l+k)$

$$\therefore X_2(k) = \frac{N}{2} \{ \delta(l-k) + \delta(l+k) \}$$

ii) $X_3(k) = \frac{1}{2j} \sum_{n=0}^{N-1} \left\{ e^{j\frac{2\pi ln}{N}} - e^{-j\frac{2\pi ln}{N}} \right\} e^{-j\frac{2\pi nk}{N}} = \frac{1}{2j} \left\{ \sum_{n=0}^{N-1} e^{j\frac{2\pi nn}{N}(i-k)} - \sum_{n=0}^{N-1} e^{-j\frac{2\pi nn}{N}(i+k)} \right\}$ now expressing its closed form of equation

$$\therefore \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \frac{1-e^{j\frac{2\pi N}{N}(l-k)}}{1-e^{j\frac{2\pi l}{N}(l-k)}} = 0 \text{ for } l \neq k \text{ and for } l = k \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(i-k)} = \sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}(0)} = N \text{ i.e. } N\delta(l-k)$$

Similarly
$$\sum_{n=0}^{N-1} e^{-j\frac{2\pi n}{N}(i+k)} = \frac{1-e^{j\frac{2\pi N}{N}(l+k)}}{1-e^{j\frac{2\pi}{N}(l+k)}} = 0$$
 for $l \neq -k$ and for $l = -k$ $\sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(0)} = N$ i.e. $N\delta(l+k)$

$$\therefore X_3(k) = \frac{N}{2i} \{ \delta(l-k) - \delta(l+k) \}$$

Q.7. By definition of DFT we have $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$ where $W_N = e^{-j\frac{2\pi}{N}}$

- i) If we substitute k=0 in this equation we get $X[0] = \sum_{n=0}^{5} x[n] W_N^0 = \sum_{n=0}^{5} x[n]$. If x(n) is real then X[0] is real and is $\sum_{n=0}^{5} x[n]$
- ii) For X[N-k] DFt equation shall be written as $X(N-k) = \sum_{n=0}^{N-1} x(n) W_N^{n(N-k)}$ $X(N-k) = \sum_{n=0}^{N-1} x(n) W_N^{-nk} W_N^{nN} = \sum_{n=0}^{N-1} x(n) W_N^{-nk}$ Now taking conjugate of this equation $X^*(N-k) = \left(\sum_{n=0}^{N-1} x(n) W_N^{-nk}\right)^*$ as $x^*(n) = x(n) : X^*(N-k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$ $X^*(N-k) = X[k]$
- iii) If N is even and if we substitute k=N/2 in DFT equation then we have $X(\frac{N}{2}) = \sum_{n=0}^{N-1} x(n) W_N^{n(N/2)}$

$$\therefore X(\frac{N}{2}) = \sum_{n=0}^{N-1} (-1)^n x(n) : W_N^{n(N/2)} = e^{-j\frac{2\pi nN}{2N}} = e^{-j\pi} = (-1)^n$$

So if x(n) is real and N is even then evaluation of $\therefore X\left(\frac{N}{2}\right) = \sum_{n=0}^{N-1} (-1)^n x(n)$ is real.