

INTERNAL ASSESSMENT TEST – II

Sub	DIGITAL SIGNAL PROCESSING					Code	18EC52		
Date	01/12/2022	Duration	90 mins	Max Marks	50	Sem	V	Branch	ECE

Answer any 5 full questions

This wor any o rain questions						
		Marks	СО	RB T		
1	State and prove the following properties of DFT	[10]	CO2	L2		
	i) Circular time shift propertyii) Circular frequency shift property					
	iii) Circular time reversal property					
2	If $x_1[n] = [2,4,6,8]$ has DFT $X_1[k] = [20,-4+4j,-4,-4-4j]$, find the DFT of the	[10]	CO ₂	L2		
	following sequences without explicitly computing their DFT.					
	i) $x_2[n] = [2,8,6,4]$ ii) $x_3[n] = [8,2,4,6]$					
	iii) $x_4[n] = \cos\left(\frac{\pi}{2}n\right)x_1(n)$					
3	Prove that multiplication of DFTs results in circular convolution the respective time	[10]	CO2	L3		
	domain sequences.					

Page 1 of 2

INTERNAL ASSESSMENT TEST – II

Sub	DIGITAL SIGNAL	PROCESSIN	[G					Code	18EC52
Date	01/12/ 2022	Duration	90 mins	Max Marks	50	Sem	V	Branch	ECE

Answer any 5 full questions

Answer any 5 run questions					
		Marks	СО	RB T	
1	State and prove the following properties of DFT	[10]	CO2	L2	
	i) Circular time shift propertyii) Circular frequency shift property				
	iii) Circular time reversal property				
2	If $x_1[n] = [2,4,6,8]$ has DFT $X_1[k] = [20,-4+4j,-4,-4-4j]$, find the DFT of the	[10]	CO ₂	L2	
	following sequences without explicitly computing their DFT.				
	i) $x_2[n] = [2,8,6,4]$ ii) $x_3[n] = [8,2,4,6]$				
	iii) $x_4[n] = \cos\left(\frac{\pi}{2}n\right)x_1(n)$				
3	Prove that multiplication of DFTs results in circular convolution the respective time	[10]	CO2	L3	
	domain sequences.				

		Marks	со	RB T
4	Compute the circular convolution of $x[n] = [2, -1, 3, -2]$ and $h[n] = [-3, 1, 2, -1]$ using DFT-IDFT method. Verify the result using matrix method.	[10]	CO2	L3
5	Consider a filter $h[n] = [1,2]$. If the input is $x[n] = [1,4,3,0,7,4,-7,-7,-1,3,4,3]$ compute the output using overlap-add method. Use block length of 5.	[10]	CO1	L3
6	Find the output of an LTI system whose impulse response is $h[n] = [2,2,1]$ for the input $x[n] = [3,0,-2,0,2,1,0,-2,-1]$ using overlap-save method. Use 7-point circular convolution.	[10]	CO1	L3
7	Compute the DFT of $x[n] = \cos\left(\frac{\pi n}{4}\right)$, $0 \le n \le 7$ using DIT-FFT.	[10]	CO3	L3

Page 2 of 2

		Marks	СО	RB T
4	Compute the circular convolution of $x[n] = [2, -1, 3, -2]$ and $h[n] = [-3, 1, 2, -1]$ using DFT-IDFT method. Verify the result using matrix method.	[10]	CO2	L3
5	Consider a filter $h[n] = [1,2]$. If the input is $x[n] = [1,4,3,0,7,4,-7,-7,-1,3,4,3]$ compute the output using overlap-add method. Use block length of 5.	[10]	CO1	L3
6	Find the output of an LTI system whose impulse response is $h[n] = [2,2,1]$ for the input $x[n] = [3,0,-2,0,2,1,0,-2,-1]$ using overlap-save method. Use 7-point circular convolution.	[10]	CO1	L3
7	Compute the DFT of $x[n] = \cos\left(\frac{\pi n}{4}\right)$, $0 \le n \le 7$ using DIT-FFT.	[10]	CO3	L3

<u>Scheme Of Evaluation</u> <u>Internal Assessment Test II – Dec 2022</u>

Sub:	: DIGITAL SIGNAL PROCESSING					Code:	18EC52		
Date:	01 / 12 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Note: Answer All Questions

Question	Description	Ma	Marks	
#	State and prove the following properties of DFT i) Circular time shift property ii) Circular frequency shift property iii) Circular time reversal property • Circular time shift property Proof • Circular frequency shift property Proof • Circular time reversal property Proof • Circular time reversal property Proof If $x_1[n] = [2,4,6,8]$ has DFT $X_1[k] = [20,-4+4j,-4,-4-4j]$, find the DFT of the following sequences without explicitly computing their DFT. i) $x_2[n] = [2,8,6,4]$ ii) $x_3[n] = [8,2,4,6]$ ii) $x_4[n] = \cos\left(\frac{\pi}{2}n\right)x_1(n)$	Marks		
1	 i) Circular time shift property ii) Circular frequency shift property iii) Circular time reversal property • Circular time shift property Proof • Circular frequency shift property Proof 	3	10	10
2	If $x_1[n] = [2,4,6,8]$ has DFT $X_1[k] = [20,-4+4j,-4,-4-4j]$, find the DFT of the following sequences without explicitly computing their DFT. i) $x_2[n] = [2,8,6,4]$ ii) $x_3[n] = [8,2,4,6]$ ii) $x_4[n] = \cos\left(\frac{\pi}{2}n\right)x_1(n)$	3	10	10
3	Prove that multiplication of DFTs results in circular convolution the respective time domain sequences. • Expression for $X_3(k)$ • α^n formula • Simplification	2 2 2 6	10	10
4	Compute the circular convolution of $x[n] = [2, -1, 3, -2]$ and $h[n] = [-3, 1, 2, -1]$ using DFT-IDFT method. Verify the result using matrix method.		10	10

	\bullet $X(k)$	3		
	• $H(k)$	3		
	$\bullet X(k)H(k)$	1		
		3		
	• IDFT		4	10
5	Consider a filter $h[n] = [1,2]$. If the input is		4	10
	x[n] = [1,4,3,0,7,4,-7,-7,-1,3,4,3] compute the output using overlap-add method. Use block length of 5.			
	Making smaller blocks	3	-	
	Computing individual outputs	5		
	Computing final output	2		
6	Find the output of an LTI system whose impulse response is $h[n] = [2,2,1]$ for the input $x[n] = [3,0,-2,0,2,1,0,-2,-1]$ using overlap-save method. Use 7-point circular convolution.		10	10
	Making smaller blocks	3		
	Computing individual outputs	5		
	Computing final output	2		
7	Compute the DFT of $x[n] = \cos\left(\frac{\pi n}{4}\right)$, $0 \le n \le 7$ using DIT-FFT.		10	10
	First stage output	3		
	Second stage output	3		
	Third stage output	4		

Solution IAT2

Solution IAT2

Q1.i) Statement: If DFT of
$$x(n)$$
 is $X[k]$, then DFT of $x((n-m))_n$, is then $x((n-m))_n = 0$ and $x(k) = 0$ and $x(k) = 0$ in Statement: If DFT of $x(n)$ is $X[k]$, then DFT of $x(n)$ is then $x((n-m))_n = 0$ and $x(k) = 0$ in Statement: If DFT of $x(n)$ is $X[k]$, then DFT of $x(n)$ is then $x((n-n)) = 0$ and $x(k) = 0$ in Statement: If DFT of $x(n)$ is $X[k]$, then DFT of $x(n)$ is then $x((n-n)) = 0$ and $x((n-n)) = 0$ in Statement: If DFT of $x(n)$ is $X[k]$, then DFT $x((n))_n$ is then $x((n-n)) = 0$ and $x((n-n)) = 0$ in Statement: If DFT of $x(n)$ is $X[k]$, then DFT $x((n))_n$ is then $x((n-n)) = 0$ and x

2

 L_0 0 0

Last one o/p of preceding sub section should be added to first one sample of succeeding sucsection

$$\begin{array}{c} \cdot y_1[n] = [1.6,11.6.0] \\ \cdot y_2[n] = [7.18,1,-21,-14] \\ \cdot y_3[n] = [-1,1,10,11.6] \\ \cdot y_3[n] = [1.6,11.6,7.18,1,-21,-15,1.10,11.6] \\ \cdot y_4[n] = [1.6,11.6,7.18,1,-21,-15,1.10,11.6] \\ \cdot y_4[n] = [1.6,11.6,7.18,1,-21,-15,1.10,11.6] \\ \cdot y_4[n] = [1.0,3,0,-2.0,2], x_2[n] = [0.2,1,0,-2,-1.0] \\ \cdot k_1[n] = [0.0,3,0,-2.0,2], x_2[n] = [0.2,1,0,-2,-1.0] \\ \cdot k_1[n] = [2,2,1,0,0.0] \\ y_1[n] = x_1[n] \odot h[n] \\ y_1[n] = x_1[n] \odot h[n] \\ y_1[2] = [1 \ 2 \ 2 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2] \begin{bmatrix} 0 \ 0 \ 0 \ 1 \ 2 \ 2 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2 \ 2 \ 0 \ 0 \ 0 \\ y_1[1] = [2,2,1,0,0.0] \\ y_2[2] = [2 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2] \\ y_1[3] = [0 \ 1 \ 2 \ 2 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2] \\ y_2[n] = [0,3,0,-2,0,2], x_2[n] = [0,2,1,0,-2,-1,0] \\ \cdot y_1[n] = [1,2,0,0,0] \\ y_1[n] = [1,2,2,0,0,0] \\ y_1[n] = [1,2,2,0,0] \\ y_1[n] = [1,2,2,0,0] \\ y_1[n] = [1,2,2,0,0] \\ y_1[n] = [1,2,2,0,0] \\ y_1[n] = [1,2,2,0] \\ y_1[n] = [1,2,2,2] \\ y_1[n] = [1,2,2] \\ y_1[n] = [1,2,2] \\ y_$$

 $X[k] = \{0,4,0,0,0,0,0,0,4\}$