IAT 2 – 5 th Sem – Principles of Communication System – Questions with Solutions

Figure 1: VSB Generator

. VSB signal generator Consists of a product Modulator and a Sideband Shaping filter or shown in figure 1.

- · product modulator generates a DSBSC signal and then pass it through a side band shaping filter.
- . Let HIP) be the transper function of side band shaping filter. This filter will pass one complete sideband along with a Vestige@trace @ a part of unwanted (other) side band.

r ne, baspl?s blinkdank, a N

The block diagram of FDM-system is shown in figures.

- L> N-Incoming independent message signals are modulated by mutually Exclusive Corriers supplied from Corrier source at each torodulator. The Modulated signals are passed through the BPF to select any one side band. Therefore BPF's produces SSBsignals and are separated in frequency and combined into a Composite signal. and this process is called Frequency division multiplexing.
	- Ly Multiplexed Bignal is transmitted over the Communication channel.
- 4 Total Bandwidth required to N-SSB Modulated Signals Without any Guard band is

 $BW_T = N \times f_m$ 3 $N =$ number of Input signals

49

4 4 the receiver side N-independent message signals are recovered by passing the composite signal through the BPF followed by Demodulator and LPF.

-Advantages of FDM:-

- 1. A Large Number of signals can be transmitted simultaneously
- FDM does not requires synchronization between Transmitter & $2.$ receiver.
- 3. Demodulation of FDM is easy

Dis advantages of FDM:-

- 1. Communication channel must have Large Bandwidth ie , $Bw_T = N \times f_{0}$
- 2. Large Numbers of Modulators & Filters are required.
- 3. Cross talk occurs to FDM

operations of PLL: - (3states) 10) Free running State 2.) Capture 3.) Phase Lock Free running : > if Vp is Zero, PLL will be in free runing $\frac{80}{5} = f + 800n$ zero $f_{\circ} = f$ Capture: If Vp is applied, veo frequency starts to change and PLL Ps Said to be in capture range. also refers as prequery pull in. Phase lock : when, Veo of is Fin-Fo=0, this is in phase lock $(F_{in} - F_{0})$ $\sqrt{V_{co}}$ \rightarrow $F_{in} - F_{0} = 0$ Cemor=0)

$$
PL \rightarrow Non-linear
$$
 G linear model of $PL = -$

Non-linear Model of PLL: let the 1/p Signal to PLL is SCt) $S(E) = A_c$ sin $[2\pi f_c t + (4, c b)] \rightarrow 0$ $-711 - 1$ Q, Ct) - angle of modulated Signal. $d_1(t) = 2\pi k_f \int m(t) dt$ 3 Consider the vco o/p is, $\phi_1(t) = 2\pi K_f \int m(t) dt$ \overrightarrow{P} VCt) = Ay Cos (2 π fct + φ_2 Ct)) \longrightarrow (3) $Av \rightarrow$ amplitude of Vep Signal Part) - angle of voo Signal ϕ_2 Ct) = $2\pi K_v \int vct) dt \rightarrow \textcircled{f}$ $D(1PF)$ \rightarrow (2) $e^{e^{t}}$ \rightarrow $\frac{180}{510}$ Fm Signal re^{t} veo The non-linearity term we get is (brequency Conponent & low Frequency Component => Km AcAv Sin (211fct + ϕ_1 CO) + ϕ_2 (C)) -

CAMP

Now,

\n
$$
\frac{1}{2} \int_{0}^{1} \frac{
$$

inpulse pons Substitute VCt) in equation (8) ϕ_e ct) = ϕ_i (t) - 2 π Kv \int ect)(het)-c)dz differentiate the equation (10, we get $\frac{d\phi_{e}(t)}{dt} = \frac{d}{dt} \phi_{1}(t) - \left(\frac{d\phi_{e}}{dt}\right)^{2} e(t) h(t-t) d\tau)$ Loop gain parameter) (e (I) => Contains sin By having this terms, it produces difficulties while analysing the PLL. (Produces some non-linearily w.r. + to the input), 80, it is colled Non-linear model of PLL. (that is nest non-lin

6) A Single line FM Signal is given by
\n
$$
V = 10
$$
 sin C16 T T x 10⁸ t + 3 sin 21T x 10⁸ t) volt
\nFind the modulation index, modulating background, deviation,
\n(201:
\n $V = 10$ Sin (16 T x 10⁸ t + 3 Sin 21T x 10⁸ t)
\n $\frac{G_0}{V}$:
\n $V = 10$ Sin (16 T x 10⁸ t + 3 Sin 21T x 10⁸ t)
\n $V = E_C$ Sin (w_c t + m₃ Sin w m₃ t)
\n $w_C = 16 \times T$ x 10⁸
\n $w_C = 16 \times T$ x 10⁸
\n $m_f = 3$
\n $w_m = 2T$ x 10⁸
\n<

what is the bandwidth required for a FM Signal if the modulating frequency is IKHZ and the maximum deviation $\sqrt{8}$ is 10KHz what is BW required for a DEBFC CA. branzmission? poile luten set 1 ? sinteriors work $901:$ $f_m = IKHZ$ $\Delta f = 10KHz$ $Bw = 2Cf_m\bar{a} \Delta f)$ = $2(1+10) = 22KH2$ $Bw = 22KHZ$ BW for Am transmission; $Bw = 2 \times fm$ $= 2 \times 1 \cdot kHz$ $\boxed{\mathsf{B}\omega \equiv 2\,\mathsf{K}\,\mathsf{H}\,\mathsf{Z}}$ We can observe that, $Bw_{(fm)}>> Bw_{Cam}$ Camplitude modulation bry, modulation)

Frequency Modulation

In Frequency Modulation the frequency of carrier signal is varied according to the instantaneous value of the modulating or baseband signal

> The general expression for Frequency Modulated (FM) wave is:

$$
S(t) = A \cos \left[\omega_c t + k_f \int_0^{\infty} x(t) dt\right]
$$

 \triangleright Frequency deviation is given as:

 \triangle

$$
\omega = |k_f \cdot \alpha^{(\pm)}|_{\text{max}} = |k_f| \alpha^{(\pm)}|_{\text{max}}
$$

Depending upon the frequency sensitivity k_f , FM may be divided as:

- \Box Narrowband FM: k_f is small therefore bandwidth of FM is narrow
- \Box Wideband FM: k_f is large therefore bandwidth of FM is wide

Wideband Frequency Modulation

□ A wideband FM is the FM wave with a large bandwidth, it has infinite bandwidth and hence known as wideband FM

 \square The modulation index m_f of wideband FM is higher than 1

It is used in the entertainment broadcasting applications such as FM radio, TV etc.

- We know that the bandwidth of FM signal depends upon the frequency deviation ($\Delta\omega$) \blacksquare
- If frequency deviation is more, bandwidth will be large
- In case of Wideband FM, k_t is high therefore bandwidth of FM is wide

Wideband Frequency Modulation

 \widehat{z}

> The expression for **Single Tone FM wave** is given as:

$$
S(t) = A \cos(\omega_c t + m_f \sin \omega_m t) - 0
$$

 \triangleright This expression may be considered as a real part of the exponential phasor given by:

$$
C_{FM} = Ae^{j(\omega_{c}t + m_{f}sin\omega_{m}t)}
$$

$$
= Ae^{j\omega_{c}t} = jm_{f}sin\omega_{m}t
$$

 \triangleright In above expression 2nd exponential is a periodic function of period $1/f_m$ and can be expanded in the form of complex Fourier series as:

$$
e^{\frac{1}{2}m_f \cdot \sin \omega_m t} = \sum_{m=-\omega}^{\infty} C_m e^{\frac{1}{2}m\omega_m t}
$$

for $-\frac{1}{\alpha t_m} \leq t \leq \frac{1}{\alpha t_m}$

 \triangleright The coefficient C_n is given by:

$$
C_{n} = f_{m} \int_{-\pi/\omega_{m}}^{\pi/\omega_{m}} e^{-j(m_{f}sin\omega_{m}t)} e^{-jn\omega_{m}t}
$$

> Substituting $x = \omega_m t$, we get

$$
C_{n} = \frac{1}{2n} \int_{0}^{n} \frac{d(m_{\mu}sin x - n x)}{dx} dx = 0
$$

- \triangleright In the above equation, integral on the right hand side is the nth order Bessel function of the first kind and argument m_f
- > This function is represented by $J_n(m_f)$

$$
\mathsf{C}_n = \mathsf{J}_n(m_f)
$$

$$
e^{\frac{1}{2}m_f\cdot\sin\omega_m t} = \sum_{m=-\infty}^{\infty} J_m(mf)e^{\frac{1}{2}m\omega_m t}
$$

Wideband Frequency Modulation

Therefore,

$$
C_{FM}(t) = Ae^{\frac{j\omega_{c}t}{2}} \sum_{n=-\omega}^{\infty} J_{n}(m_{f})e^{\frac{j\omega_{m}t}{2}}
$$

$$
= A \sum_{n=-\omega}^{\infty} J_{n}(m_{f})e^{\frac{j(\omega_{c}t + n\omega_{m})t}{2}}
$$

> In above expression, the real part of RHS provides the expression for FM signal i.e.:

$$
S(t) = A \sum_{m=-\infty}^{\infty} J_m(m_f) (\cos \omega_c + n \omega_m) t
$$

- > Therefore original single tone FM expression is converted into modified form which consist of Bessel function
- \triangleright The Bessel function is expanded in a power series given as:

$$
J_{m}(m_{1}) = \sum_{m=0}^{\infty} \frac{(-1)^{m} (\frac{1}{2} m_{f})^{m+2m}}{m! m^{m+2m}} - \text{a}
$$

- > Few important properties of Bessel function may be summarized as:
	- 1. $J_n(m_f) = J_{(m)} m_f$ for even n $J_{n}(m_{f}) = -J_{m}m_{f}$, $\left\{ -\frac{1}{m} \right\}$
	- 2. $J_{o}(m_{f}) \stackrel{\Delta}{=} 1$ For small values of m_f $J_1(m_f) \stackrel{?}{=} m_f/2$ $J_{n}(m_{f}) \stackrel{4}{=} 0$ for n)

3.
$$
\sum_{m=-\infty}^{\infty} \mathbb{I}_m^2(m_f) = 1
$$

- \triangleright By the use of first property, equation can be written as:
- \Rightarrow s(t) = A{J₀ (m_i) Cos $\omega_c t$ + J₁ (m_i) [Cos (ω_c + ω_m) t Cos (ω_c $-\omega_{\rm m}$) t] + J₂ (m_f) [Cos ($\omega_{\rm c}$ + 2 $\omega_{\rm m}$) t + Cos ($\overline{\omega}_{\rm c}$ – 2 $\omega_{\rm m}$) t] + J₃ (m_f) [Cos (ω_c + 3 ω_m) t – Cos (ω_c – 3 ω_m) t] + J₄ (m_f) [Cos (ω_c + $4\omega_m$) t + Cos (ω_c – $4\omega_m$) t]+}

Wideband Frequency Modulation

Wideband Frequency Modulation

From the above equation some important points are summarized as:

- The FM wave consists of carrier, the first term represents the carrier
- \Box The FM wave ideally consists of infinite number of sidebands, all the terms except the first one are sidebands
- \Box The amplitudes of the carrier and sidebands is dependent on the J coefficients
- \sqrt{a} As the values of J coefficients are dependent on the modulation index m_f , the modulation index determines how many sideband components have significant amplitudes
- $\sqrt{2}$ Some of the J coefficients can be negative, therefore, there is a 180° phase shift for that particular pair of sidebands
- The carrier component does not remain constant as $J_0(m_f)$ is varying the amplitude of the carrier will also vary, however, the amplitude of FM wave will remain constant
- $\sqrt{2}$ For certain values of modulation index, the carrier component will disappear completely, these values are known as eigen values
- \Box In case of FM, the total transmitted power always remains constant, it is not dependent on the modulation index

The devices used are FET, transistor or varactor diode

Reactance Modulator

 $-0 \vee$

 $\circled{2}$

Frequency of oscillations of the Hartley oscillator is:

$$
f_i(t) = \frac{1}{2\pi\sqrt{(L_1 + L_2)C(t)}}
$$

where C(t) = C + C_{varector}

 \mathbf{I}

Let the relationship between the modulating voltage $x(t) = 0$ and the capacitance C(t) is written as:

$$
C(t) = C - k_c x(t) \qquad \qquad
$$

(k) is the sensitivity of the varactor capacitance

$$
f_i(t) = \frac{1}{2\pi\sqrt{(L_1 + L_2)(C - k_c x(t))}} = \frac{1}{2\pi\left[\sqrt{(L_1 + L_2)C - (L_1 + L_2)k_c x(t)}\right]}
$$

$$
f_i(t) = \frac{1}{2\pi\sqrt{(L_1 + L_2)C}\left[1 - \frac{k_c x(t)}{C}\right]^{1/2}}
$$

Let us say, $\frac{1}{2\pi\sqrt{(L_1 + L_2)C}} = f_0$

An example of direct FM is shown in figure, which uses Hartley oscillator along with a varactor diode

 f_0 is the oscillator frequency in absence of the modulating signal $[x(t) = 0]$. Therefore,

$$
\mathbf{f}_i(t) = \mathbf{f}_0 \left[1 - \frac{k_c}{C} \mathbf{x}(t) \right]^{-1/2}
$$

Reactance Modulator

 $v - 0$

 \vee

If the maximum change in the capacitance corresponding to the modulating wave is assumed to be small as compared to the unmodulated capacitance C, then equation can be written as:

 $\mathbf{f}_{\text{i}}(\mathbf{t}) = \mathbf{f}_0 \left[1 + \frac{\mathbf{k}_\text{c}}{2\text{C}} \mathbf{x}(\mathbf{t}) \right]$

$$
f_i(t) = f_0 \left[1 - \frac{k_c}{C} x(t) \right]^{-1/2}
$$

K.

$$
f_i(t) = f_0 + \frac{f_0 k_c}{2 C} . x(t)
$$

let us define: $\frac{I_0 \kappa_c}{2C} = k_f$

Therefore, we can write: $|f_i(t) = f_0 + k_f x(t)|$

Where,

 k_f is known as the frequency sensitivity of the modulator

Limitations of Direct Method of FM Generation

- \Box It is very difficult to get high order stability in carrier frequency. It is because in this method the basic oscillator is not a stable oscillator, as it is controlled by the modulating signal
- \square Due to the non-linearity of the varactor diode, FM signal is distorted. Varactor diode produces frequency variations are produced because of harmonics of the modulating or baseband signal