USN					

Internal Assessment Test 3 – Feb. 2023

Sub:	Digital System Design using Verilog				Sub Code	: 21EC32	Branch:	ECE			
Date:	08-02-2023 Duration: 90 Minutes Max Marks: 50 Sem/Se					Sem / Sec	3/A,B,	3/A,B,C,D		OBE	
Answer any FIVE FULL Questions						MARKS	CO	RBT			
1 (a)								[04]	CO3	L1	
	excitation table for the JK flip-flop.										
1 (b)	(b) Design a Mod-6 synchronous counter using T Flip-flop. [06]						[06]	CO3	L2		
2	2 Design a 4-bit universal shift register using positive edge triggered D-flip-flop						ed D-flip-flop	[10]	CO3	L3	
	and multiplexer	rs to <u>opera</u>	te as indica	ted below:							
]	Mode select	d Opera	tion						
			00	Hol	d						
			01	Right S	Shift						
			10	Left S	hift						
			11	Parallel	Load	1					
3								[10]	CO3	L2	
	Compare the counters based shift register.										
4	Illustrate with examples the data types used to define nets, registers, vectors [10] CO4 I						L2				
	and arrays.										
5							CO4	L3			
	assign a delay time to the signal assignment statement with the timing										
	waveform.										
6	6 Illustrate the IF statement, IF as ELSE-IF, signal and variable assignment with						[10]	CO4	L3		
	an example.										
7	Explain the behavioral description of a Positive Edge-Triggered JK flip-flop [10] CO4 L2						L2				
	using the CASE statement with the timing waveform.										

21 EC32 - Digital System Design Wing Verilog

Internal Assessment Test 3

Answer Key

Characteristic Equation 1. a)

SR Hip-Flop: Qt = S+RQ

T Flip-Flop: 9= TQ+TQ

1 Mark)

(1 Mark)

Excitation Table:

(2 Marks)

9	Qt	J	K
C	0	0	X
0)	1	X
1	C) .	X I
1		() >	(0

7-Flip-Flop b) Mod-6 Synchronous counter using A QA+ QB+QC+ QA QB QC 0 0 0 1 0 0 0 0 TA = BC + AC 0 0 = C(A+B) 0 0

0 0 0 0 1 0 0 1

0 0 0 (2 Marks) 0 0

0 X X TB = AC TC=1

(2 Marks)

4-bit Universal Shift Register 2.

Operation Hode select Hold 00 Right Shift 01 Left shift 10

parallel Load

binary sipple counter consists of a series connection of complementing flip-flops, with the output of each flip-flop connected to clock-pulse input of the next-higher order flip blop. All I and k inputs are equal to 1. (4 Marks) MaB Decimal Value 93 93 Ò J2 92 53 Jo 91 00 0 0 CIK FFO FFI FF2 0 Po I Q1 9 60 11 (4 Marks) P3 12 14

15

4. Verilog Data Types

Verilog supports several data types, including: nete, registers,

Vectors, integer, real, parameters and arrays.

Nets: It is declared by the predefined word wire. Nets have Value that Change continuously by the circuits that are driving 12 Marks 1

them.

Net Values Verilog Definiteon Value O logic o (false)

I logic I (true)

X. Lenknown

Z. High impedance Enample: wire sum; (Declares a net by name sum) wire 81=1'60; (initial value of s) is declared).

Registers: It stores the value until they are updated. It is defined by the predefined word neg (4 Marks)

Verilog Register values

Verollag	
Value	Definition
0	Logic o (false)
1	cogic 1 (Ence)
X	unknown
Z	High impedance

Enample: veg Sum-total; The statement declares a register by the name sum total.

Vectors: vectors are multiple bits. A register or a net can be declared as a vector. Vectors are declared by brackets[] Example:

Wire [8:0] a = 4'blo10; The Statement declares Net a. It
wire [8:0] a = 4'blo10; has 4-bits and its initial value is 1010. register total. Its size is 8 bits and

reg [7:0] total = 8'd12; Arrays: It doesnot have decimal value is 12. (2 marks

a predefined word for array. Register and integers can be written as arrays.

Enample:

parameter N= 4; pasameter N= 3; reg signed [M; 0] carry[0:N]; reg [M:0] b[0;N]; integer Sum [6: N];


```
Signal and variable Assignment
                                                 (4 Marks)
 Enample: module D. latch (d. E. P. P6);
 input d, E;
  Output Q, 96;
  reg Q, Qb;
  always @ (d, E)
  begin
   if (E == 1)
    begin Q=d;
Qb=NQ;
    endmodule
7. positive Edge Inggered JK Flip-flop
   positive edge Flip-Flops Sample the input only at the positive
  edges of the clock; any change in the input that does not
  occur at the edges is not sampled by the output. (4 Marks)
                                State diagram
   Verilog Positive Edge - Triggened Jk Flip-Flop using case
   module JK-FF (JK, Clk, 9,96);
                                                   (6 Marks)
   input [1:0] Jk;
   input CIK;
    output reg 9,96;
   always @ (poredge CIK)
    begin
    Case (Jt)
      2'do: 9=9;
      2'd1; q=0;
      2'd2: 9=1;
      2'd3: 9=~9;
     endcase
    9b=~91;
    end
    endmodule
```