YEARS o
o® .

N
USN [| ? =) CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment Test 3 Solution —JAN 2023

Sub: | Verilog HDL SUb |4 apcsg Branch | pop
Code:
Date: | 23/1/23 |Duration: | 90 min’s M;\:'fg‘ 50 | Sem/Sec 5"/A B,C,D OBE
Answer any FIVE FULL Questions MAéRK co R.I_B
1 (a)Explain blocking and non blocking statements with an example. [5] CO01 L2

. Blocking Assignments
Blocking assignment statements are executed in the order they are specified in a sequential
block. A blocking assignment will not block execution of statements that follow in a paralle]

block. The = operator is used to specify blocking assignments.

Example 7-6 Blocking Statements

reg X, v.

reg [15:0] reg a. reg b:

mnteger count:

//All behavioral statements must be mside an initial or always block

mnitial

begin

to end

x=0:y=1; z=1://Scalar assignments

count = 0: //Assignment to integer variables

reg a= 1600: reg b=reg a: //initialize vectors

#15 reg_a[2] = 1'b1: //Bit select assignment with delay

#10 reg b[15:13] = {X. v. z} //Assign result of concatenation
// part select of a vector

count = count + 1: //Assignment to an integer (increment)

(b) Write behaviorioal verilog description of 4 to 1 Multiplexer [5] CO2,
CO3

‘There are two types ot blocks: sequential blocks and parallel blocks.
Sequential blocks
The keywords begin and end are used to group statements into sequential blocks.
Sequential blocks have the following characteristics:
e The statements in a sequential block are processed in the order they are specif
A statement is executed only after its preceding statement completes executio

(except for nonblocking assignments with intra-assignment timing control).

e If delay or event control is specified, it is relative to the simulation time when
previous statement in the block completed execution.

2 (a) Explain force, release and assign, deassign statements with an example. [6] CO5 L2
(b) Explain sequential and parallel block with one example. [4] CO2
end

//Illustration 2: Sequential blocks with delay.
reg %, y;
reg [1:0] z, w;

initial

begin
x = 1'b0; //completes at simulation time 0
#5 yv = 1'bl; //completes at simulation time
#10 z = {x, y}; //completes at simulation t
#20 w = {y, x}; //completes at simulation t

end
‘There are two types ot blocks: sequential BIOCKS and parallel bIOCKS.

Sequential blocks
The keywords begin and end are used to group statements into sequential blos
Sequential blocks have the following characteristics:
e The statements in a sequential block are processed in the order they ar
A statement is executed only after its preceding statement completes ¢
(except for nonblocking assignments with intra-assignment timing cor
e [fdelay or event control is specified, it is relative to the simulation tin

previous statement in the block completed execution.

3 Write a design and test bench verilog program for carry look-ahead adder using data [10] CO4 L3
flow description.

4 (a)Compare task and function with syntax. [4] CO4 L3

(b) Write verilog code to calculate parity using task.

[6]

Co2z,
COg3,
CO5

8 A :
Internal Assessment Test 3 -JAN 2023
Sub: | Verilog HDL Sub | 1opcss | Branch | eop
Code:
Date: | 23/1/23 | Duration: 90 min’s X g | Sem/see 5%/A,B,C,D OBE
Answer any FIVE FULL Questions M'AéRK cO RTB
1 (a)Explain blocking and non blocking statements with an example. [5] CO01 L2
(b) Write verilog program to design 4 to 1 Multiplexer using logic equation and [5] CO2, L3
conditional operator.(Data flow description) COos3
2 (a) Explain force, release and assign, deassign statements with an example. [6] CO5 L2
(b) Explain sequential and parallel block with one example. [4] CO2 L2
3 Write a design and test bench verilog program for 4bit full adder with carry look- [10] CO4 L3
ahead using data flow description.
Example 6-5 4-bit Full Adder with Carry Lookahead
module fulladd4 (sum, c_out, a, b, c_in};
// Inputs and outputs
output [3:0] sum;
output ¢ out;
input [3:0] a,b;
input c_in;
// Internal wires
wire p0,g0, pl,gl, p2,92, p3,93;
wire c4, c3, c2, cl;
// compute the p for each stage
assign p0 = a[0] " b[O],
pl = a[l] ™ b[l],
4 (a)Compare task and function with syntax. [4] CO4 L3

Table 8-1. Tasks and Functions

Functions

Tasks

A function can enable another function
but not another task.

A task can enable other tasks and functions.

Functions always execute in 0
simulation time.

Tasks may execute in non-zero simulation
time.

Functions must not contain any delay,
event, or timing control statements.

Tasks may contain delay, event, or timing
control statements.

Functions must have at least one input
argument. They can have more than one
input.

Tasks may have zero or more arguments of
type input, output, or inout.

unctions always return a single value.
They cannot have output or inout

Tasks do not return with a value, but can
pass multiple values through output and

arguments. inout arguments.
(b) Write verilog code to calculate parity of 32 bit data using task with delay. [6] CO2, L3
CO3,
CO5
//Define a module that contains the function calc parity
module parity;
reg [31:0] addr;
reg parity;
//Compute new parity whenever address value changes
always @ (addr)
begin
parity = calc parity(addr); //First invocation of calc parity
Sdisplay("Parity calculated = %b", calc_parity(addr));
//8econd inveocation of calc parity
end
//define the parity calculation function
function calc parity;
input [31:0] address;
begin
//set the output value appropriately. Use the implicit
//internal register calc parity.
calc_parity = "“address; //Return the xor of all address bits.
end
endfunction
(a) Explain generate case statement with an example [5] CO01, L2

CO2

// Port declarations
output [N-1:0] sum;
output co;

input [N-1:0] a0, al;
input ci;

// Instantiate the appropriate adder based on the width of the Lk
// This is based on parameter N that can be redefined at
// instantiation time.
generate
case (N)
//Special cases for 1 and 2 bit adders
1: adder_1lbit adderl(c0, sum, a0, al, ci); //l-bit implementat
2: adder 2bit adder2(c0O, sum, a0, al, ci); //2-bit implementat
// Default is N-bit carry look ahead adder
default: adder_cla #(N) adder3(c0O, sum, a0, al, ci);
endcase
endgenerate //end of the generate block

endmodule

// This module generates an N-bit adder

module adder(co, sum, al, al, ci);
// Parameter Declaration. This can be redefi
parameter N = 4; // 4-bit bus by default

7.8.3 Generate Case

A generate case permits the following Verilog constructs to be conditionally ins
into another module based on a select-one-of-many case construct that is detern
the time the design is elaborated:

e Modules

e User defined primitives, Gate primitives

¢ Continuous assignments

¢ initial and always blocks

(b) Write verilog code to calculate factorial of given number using function.

[5]

CO4

L3

rodule top;

parameter delay=10;
reg [3:0] n:
reg (31:0) n_fac;

initial
begin

n=4'qas;

#delay factorialin fac,n):

$display($time, "Factorial of n is %d",n_fac];
end

task avcomatic rfactorial;
output [31:0] x fac’
input [3:0] x:
hegin
if (x>=2)
hegin
factorial (x_fac,x-1};
x_fac=x_fac*x;
end
else
x_fac=1;
end
endtask

endmodule

6 Explain neat flow chart explain logic systhesis from RTL to gates.

Architectural
Description

'

- High-Level

Description
+ Design Constraints
Computer-Aided a7
Logic Synthesis
‘ \ Standard Cell
Library
Optimized : (technology
Gate-Level Netlist dependent)
no

yes

Place and Route

A

[10

CO6

L2

Figure 14-4. Logic Synthesis Flow from RTL to Gates

RTL Description

Translation

v

[

|

|

|

| Unoptimized
| Intermediate
|

|

|

|

|

Representation

Y

‘ Logic Optimization
Library of available

¢ ates, and leaf-
Design Constraints-—p» Technology Mapping -a—— level cells

| and Optimization 'l (technology
'——————‘—————-‘ library)

Optimized Gate-
Level Representation

7 Explain overriding parameters with examples. [10] CO2,

CO3

L3

9.2 Overriding Parameters

Parameters can be defined in a module definition, as was discussed earlier in Section
3.2.8, Parameters. However, during compilation of Verilog modules, parameter values
can be altered separately for each module instance. This allows us to pass a distinct set of
parameter values to each module during compilation regardless of predefined parameter
values.

There are two ways to override parameter values: through the defparam statement or
through module instance parameter value assignment.

9.2.1 defparam Statement

Parameter values can be changed in any module instance in the design with the keyword
defparam. The hierarchical name of the module instance can be used to override

CClI HoD

