

i. Two force member ii) Three force member **4** CO¹ L¹

2 A four link mechanism is acted upon by forces as shown in the fig (a). Determine the torque T_2 to be applied on link 2 to keep the mechanism in equilibrium. AD=50mm, AB=40mm, BC=100mm, DC=75mm, DE= 35mm.

fig (a)

 \circledcirc

 $\tilde{\mathbb{A}}$

16 CO1 L3

3. Determine i) Critical damping coefficient ii) damping factor (iii) natural frequency of damped vibration (iv) logarithmic decrement (v) ratio of two consecutive amplitudes which consists of mass of 25 kg, a spring of stiffness 15kN/m and a damper. The damping provided is only 15% of critical value. **10** CO5 L3

Determine the natural frequency of the system shown in Fig. 1

10

10

$$
Fig. 1
$$

5 Define logarithmic decrement and show that it can be expressed as $\delta = \frac{1}{n} \log \left(\frac{x_0}{x_n} \right)$, where n = no of cycles, x_0 is initial amplitude and x_n is the amplitude after 'n' cycles. **10** CO5 L3

3. Determine i) Critical damping coefficient ii) damping factor (iii) natural frequency of damped vibration (iv) logarithmic decrement (v) ratio of two consecutive amplitudes which consists of mass of 25 kg, a spring of stiffness 15kN/m and a damper. The damping provided is only 15% of critical value. **10** CO5 L3

Determine the natural frequency of the system shown in Fig. 1

4

4

min & $CO₄$ L3

Fig. 1

 $\frac{1}{4}$ with $\frac{1}{4}$

5 Define logarithmic decrement and show that it can be expressed as $\delta = \frac{1}{n} \log \left(\frac{x_0}{x_n} \right)$, where n = no of cycles, x_0 is initial amplitude and x_n is the amplitude after 'n' cycles. **10** CO5 L3

Equilibrium of Two Force Members

A member under the action of two forces will be in equilibrium if

- The forces are of the same magnitude,
- The forces act along the same line, and the forces are in opposite directions

Equilibrium of Three Force Members

A member under the action of three forces will be in equilibrium if

- The resultant of the forces is zero, and
- The lines of action of the forces intersect at a point (known as *point of concurrency).*

Figure (a) indicates an example for the three force member and (b) and (c) indicates the force polygon to check for the static equilibrium.

Member with two forces and a torque

A member under the action of two forces and an applied torque will be in equilibrium if

- The forces are equal in magnitude, parallel in direction and opposite in sense and
- The forces form a couple which is equal and opposite to the applied torque.

Figure shows a member acted upon by two equal forces **F1**, and **F2** and an applied torque **T** for equilibrium,

$$
T = F_1 h = F_2 h
$$

Where *T*, F_1 *and* F_2 *are the magnitudes of T***,** F_1 *and* F_2 respectively.

T is clockwise whereas the couple formed by **F1**, and **F²** is counter-clockwise.

A
\n
$$
M=35 kg
$$
; $K=15 kN/m = 15,000 N/m$; $C=0.15 C_c$
\nDamping below $\xi = \frac{C}{c_c} = 0.15^{c_c} = 0.15$
\nCritical damping $C_c = 2m \omega_0 = 2 \times 25 \times \sqrt{\frac{15,000}{25}}$
\n $Cc = 15 \times 10^5$
\nLogarithmic
\ndecumat $\delta = \frac{2.8 \xi}{\sqrt{1-\xi^2}} = \frac{2 \times (0.15)}{\sqrt{1-0.15^2}}$
\n $\delta = 0.91439$
\nRatio of two
\n $\frac{G_1}{G_1}$ by $(\frac{R_1}{24n+1})$
\n $\delta = 0.91439$
\n $\delta = 0.91439$

$$
f(x) = \frac{1}{\sqrt{\frac{27}{9}}}
$$

From f_{3} $x = x0$ 3 $x' = (x+a)0$

Energy method

\n
$$
K.E = \text{Rotational } K.E \text{ (KE_{pot}) } + (K.E)_{\text{Travolutions}}.
$$
\n
$$
(K.E)_{\text{Rot}} = \frac{1}{2} \text{I} \dot{v}^{2} = \frac{1}{2} \left[\frac{1}{2} M n^{2} \right] \dot{v}^{2}
$$
\n
$$
(K.E)_{\text{Trans}} = \frac{1}{2} M \dot{x}^{2} = \frac{1}{2} M (n \dot{v})^{2} = \frac{1}{2} M n^{2} \dot{v}^{2}
$$
\n
$$
\therefore \text{Total } K.E = \frac{1}{2} \left[\frac{1}{2} M n^{2} \right] \dot{v}^{2} + \frac{1}{2} M n^{2} \dot{v}^{2}
$$
\n
$$
= \frac{1}{4} M n^{2} \dot{v}^{2} + \frac{1}{2} M n^{2} \dot{v}^{2}
$$
\nPotential = PE due to high

\nSpung

 σ

$$
P.E
$$
 due to
left Spring = $\frac{1}{2}K[(n+a)\theta]^2$

 $3.$

$$
\rho \in due \text{ to } \lambda_{\mathcal{G}}^{\mathcal{L}} \text{ with } \rho \text{ is given by } \rho \text{ with } \rho \text{
$$

4. Logarithmic Decrement

$$
\frac{x_1}{x_2} = \frac{X e^{-\frac{x_0}{x_0}} t_1}{X e^{-\frac{x_0}{x_0}} t_2} = e^{-\frac{x_0}{x_0} t_1 - (\frac{x_0}{x_0} t_2)} = e^{-\frac{x_0}{x_0} (\frac{t_2 - t_1}{x_1})}
$$
\n
$$
\frac{x_1}{(t_2 - t_1)} = t_1 = \frac{2\pi}{\omega d} = \frac{2\pi}{\omega d \sqrt{\omega d \sqrt{1-\epsilon^2}}}
$$
\n
$$
\frac{x_1}{x_2} = e^{\frac{x_0}{x_0} t_1} = e^{\frac{x_0}{x_0} \sqrt{\frac{x_1}{1-\epsilon^2}}}
$$
\n
$$
\frac{x_1}{x_2} = e^{2K\xi \sqrt{\frac{1-\epsilon^2}{1-\epsilon^2}}}
$$
\n
$$
\frac{x_1}{x_2} = \frac{x_2}{\frac{x_2}{x_3}} = \frac{x_2}{x_4} = \frac{2\pi}{x_4}
$$
\n
$$
\frac{x_1}{x_2} = \frac{x_2}{x_3} = \frac{x_2}{x_4} = \frac{2\pi}{x_4}
$$
\nTaking natural log on both sides\n
$$
\frac{x_1}{x_1} = \frac{x_1}{x_1} = \frac{x_1}{x_1} = \frac{x_1}{x_1} = \frac{2\pi}{x_1} =
$$