
Page 1 of 15

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – Dec. 2022

Sub: Cloud Computing Sub Code: 20MCA342

Date: 27/12//2022 Duration: 90 min’s Max Marks: 50 Sem: III Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS

OBE

CO

RBT

1 Briefly summarize the Cloud Computing Reference Model.

OR

[10]
CO1 L1

2 Discuss RPC and how it enables interprocess communication. [10] CO2 L2

3

PART II

What is cloud? List and explain characteristics and benefits of cloud computing.

OR

[10]

CO1 L1

4

Discuss examples of distributed framework [10]
CO2 L2

5
PART III

What are the major distributed computing technologies that led to cloud

computing?

OR

[10]

CO1

L1

6 Compare the characteristics of parallel and distributed system. Draw and explain

the layered view of distributed system

[10] CO2 L3

7
PART IV

Discuss the cloud deployment model and cloud system across all market segments

[10]

CO1

L1

8

OR

Discuss the most important model for message-based communication.

[10]

CO2

L2

9
PARTV

Discuss the vision and era of cloud computing
OR

[10] CO1 L2

10 Explain the system architectural styles.

[10] CO2 L2

Page 2 of 15

Q1) Briefly summarize the Cloud Computing Reference Model.

A fundamental characteristic of cloud computing is the capability to deliver, on demand, a variety of IT

services that are quite diverse from each other. This variety creates different perceptions of what cloud

computing is among users. Despite this lack of uniformity, it is possible to classify cloud computing services

offerings into three major categories: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and

Software-as-a-Service (SaaS).

At the base of the stack, Infrastructure-as-a-Service solutions deliver infrastructure on demand in the form

of virtual hardware, storage, and networking. Virtual hardware is utilized to provide compute on demand in

the form of virtual machine instances. These are created at users’ request on the provider’s infrastructure,

and users are given tools and interfaces to configure the software stack installed in the virtual machine. The

pricing model is usually defined in terms of dollars per hour, where the hourly cost is influenced by the

characteristics of the virtual hardware. Virtual storage is delivered in the form of raw disk space or object

store.. Virtual networking identifies the collection of services that manage the networking among virtual

instances and their connectivity to the Internet or private networks.

Platform-as-a-Service solutions are the next step in the stack. They deliver scalable and elastic runtime

environments on demand and host the execution of applications. These services are backed by a core

middleware platform that is responsible for creating the abstract environment where applications are

deployed and executed. It is the responsibility of the service provider to provide scalability and to manage

fault tolerance, while users are requested to focus on the logic of the application developed by leveraging the

provider’s APIs and libraries. This approach increases the level of abstraction at which cloud computing is

leveraged but also constrains the user in a more controlled environment.

At the top of the stack, Software-as-a-Service solutions provide applications and services on demand. Most

of the common functionalities of desktop applications—such as office automation, document management,

photo editing, and customer relationship management (CRM) software—are replicated on the provider’s

infrastructure and made more scalable and accessible through a browser on demand. These applications are

shared across multiple users whose interaction is isolated from the other users. The SaaS layer is also the

area of social networking Websites, which leverage cloud-based infrastructures to sustain the load generated

by their popularity.

 Each layer provides a different service to users. IaaS solutions are sought by users who want to leverage

cloud computing from building dynamically scalable computing systems requiring a specific software stack.

IaaS services are therefore used to develop scalable Websites or for background processing. PaaS solutions

Page 3 of 15

provide scalable programming platforms for developing applications and are more appropriate when new

systems have to be developed. SaaS solutions target mostly end users who want to benefit from the elastic

scalability of the cloud without doing any software development, installation, configuration, and

maintenance. This solution is appropriate when there are existing SaaS services that fit users needs (such as

email, document management, CRM, etc.) and a minimum level of customization is needed.

Q2) Discuss RPC and how it enables interprocess communication.

RPC is the fundamental abstraction enabling the execution of procedures on client’s request. RPC allows

extending the concept of a procedure call beyond the boundaries of a process and a single memory address

space. The called procedure and calling procedure may be on the same system or they may be on different

systems in a network. Figure 2.14 illustrates the major components that enable an RPC system. The system

is based on a client/server model. The server process maintains a registry of all the available procedures that

can be remotely invoked and listens for requests from clients that specify which procedure to invoke,

together with the values of the parameters required by the procedure. RPC maintains the synchronous

pattern that is natural in IPC and function calls. Therefore, the calling process thread remains blocked until

the procedure on the server process has completed its execution and the result (if any) is returned to the

client.

An important aspect of RPC is marshaling, which identifies the process of converting parameter and return

values into a form that is more suitable to be transported over a network through a sequence of bytes. The

term unmarshaling refers to the opposite procedure. Marshaling and unmarshaling are performed by the

RPC runtime infrastructure, and the client and server user code does not necessarily have to perform these

tasks. The RPC runtime, on the other hand, is not only responsible for parameter packing and unpacking but

also for handling the request-reply interaction that happens between the client and the server process in a

completely transparent manner. Therefore, developing a system leveraging RPC for IPC consists of the

following steps:

• Design and implementation of the server procedures that will be exposed for remote invocation.

• Registration of remote procedures with the RPC server on the node where they will be made available. •

Design and implementation of the client code that invokes the remote procedure(s).

Each RPC implementation generally provides client and server application programming interfaces (APIs)

that facilitate the use of this simple and powerful abstraction. An important observation has to be made

Page 4 of 15

concerning the passing of parameters and return values. Since the server and the client processes are in two

separate address spaces, the use of parameters passed by references or pointers is not suitable in this

scenario, because once unmarshaled these will refer to a memory location that is not accessible from within

the server process. Second, in user-defined parameters and return value types, it is necessary to ensure that

the RPC runtime is able to marshal them.

This is generally possible, especially when user-defined types are composed of simple types, for which

marshaling is naturally provided. RPC has been a dominant technology for IPC for quite a long time, and

several programming languages and environments support this interaction pattern in the form of libraries

and additional packages. For instance, RPyC is an RPC implementation for Python. There also exist

platformindependent solutions such as XML-RPC and JSON-RPC, which provide RPC facilities over XML

and JSON, respectively. Thrift [113] is the framework developed at Facebook for enabling a transparent

cross-language RPC model. Currently, the term RPC implementations encompass a variety of solutions

including frameworks such distributed object programming (CORBA, DCOM, Java RMI, and .NET

Remoting) and Web services that evolved from the original RPC concept.

Q3) what is cloud? List and explain characteristics and benefits of cloud computing?

The term cloud has historically been used in the telecommunications industry as an abstraction of the

network in system diagrams. It then became the symbol of the most popular computer network: the Internet.

This meaning also applies to cloud computing, which refers to an Internet-centric way of computing.

The Internet plays a fundamental role in cloud computing, since it represents either the medium or the

platform through which many cloud computing services are delivered and made accessible. This aspect is

also reflected in the definition given by Armbrust et al. [28]:

Cloud computing refers to both the applications delivered as services over the Internet and the hardware

and system software in the datacenters that provide those services.

This definition describes cloud computing as a phenomenon touching on the entire stack: from the

underlying hardware to the high-level software services and applications. It introduces the concept of

everything as a service, mostly referred as XaaS, 2 where the different components of a system—IT

infrastructure, development platforms, databases, and so on—can be delivered, measured, and consequently

priced as a service

This notion of multiple parties using a shared cloud computing environment is highlighted in a definition

proposed by the U.S. National Institute of Standards and Technology (NIST):

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service provider interaction.

According to Reese [29], we can define three criteria to discriminate whether a service is delivered in the

cloud computing style:

• The service is accessible via a Web browser (nonproprietary) or a Web services application

programming interface (API).

• Zero capital expenditure is necessary to get started.

• You pay only for what you use as you use it.

The utility-oriented nature of cloud computing is clearly expressed by Buyya et al. [30]:

A cloud is a type of parallel and distributed system consisting of a collection of interconnected and

virtualized computers that are dynamically provisioned and presented as one or more unified computing

resources based on service-level agreements established through negotiation between the service provider

and consumers.

Cloud computing has some interesting characteristics that bring benefits to both cloud service consumers

(CSCs) and cloud service providers (CSPs). These characteristics are:

• No up-front commitments

• On-demand access

Page 5 of 15

• Nice pricing

• Simplified application acceleration and scalability

• Efficient resource allocation

• Energy efficiency

• Seamless creation and use of third-party services

Q4) Discuss examples of distributed framework

Page 6 of 15

Q5) What are the major distributed computing technologies that led to cloud computing?

Three major milestones have led to cloud computing: mainframe computing cluster computing, and grid

computing.

 Mainframes. These were the first examples of large computational facilities leveraging multiple processing

units. Mainframes were powerful, highly reliable computers specialized for large data movement and

massive input/output (I/O) operations. They were mostly used by large organizations for bulk data

processing tasks such as online transactions, enterprise resource planning, and other operations involving

the processing of significant amounts of data. One of the most attractive features of mainframes was the

ability to be highly reliable computers that were “always on” and capable of tolerating failures transparently.

No system shutdown was required to replace failed components, and the system could work without

interruption. Now their popularity and deployments have reduced, but evolved versions of such systems are

Page 7 of 15

still in use for transaction processing (such as online banking, airline ticket booking, supermarket and telcos,

and government services).

 Clusters. Cluster computing started as a low-cost alternative to the use of mainframes and supercomputers.

The technology advancement that created faster and more powerful mainframes and supercomputers

eventually generated an increased availability of cheap commodity machines as a side effect. These

machines could then be connected by a high-bandwidth network and controlled by specific software tools

that manage them as a single system. Starting in the 1980s, clusters become the standard technology for

parallel and high-performance computing. Built by commodity machines, they were cheaper than

mainframes and made high-performance computing available to a large number of groups, including

universities and small research labs. One of the attractive features of clusters was that the computational

power of commodity machines could be leveraged to solve problems that were previously manageable only

on expensive supercomputers. Moreover, clusters could be easily extended if more computational power

was required.

 Grid computing appeared in the early 1990s as an evolution of cluster computing. In an analogy to the

power grid, grid computing proposed a new approach to access large computational power, huge storage

facilities, and a variety of services. Users can “consume” resources in the same way as they use other utilities

such as power, gas, and water. Grids initially developed as aggregations of geographically dispersed clusters

by means of Internet connections. These clusters belonged to different organizations, and arrangements

were made among them to share the computational power. Different from a “large cluster,” a computing

grid was a dynamic aggregation of heterogeneous computing nodes, and its scale was nationwide or even

worldwide. Several developments made possible the diffusion of computing grids: (a) clusters became quite

common resources; (b) they were often underutilized; (c) new problems were requiring computational

power that went beyond the capability of single clusters; and (d) the improvements in networking and the

diffusion of the Internet made possible long-distance, high-bandwidth connectivity. All these elements led to

the development of grids, which now serve a multitude of users across the world

Q6) Compare the characteristics of parallel and distributed system. Draw and explain the layered view of

distributed system

A distributed system is the result of the interaction of several components that traverse the entire computing

stack from hardware to software. It emerges from the collaboration of several elements that—by working

together—give users the illusion of a single coherent system

Below figure provides an overview of the different layers that are involved in providing the services of a

distributed system.

Page 8 of 15

 At the very bottom layer, computer and network hardware constitute the physical infrastructure; these

components are directly managed by the operating system, which provides the basic services for

interprocess communication (IPC), process scheduling and management, and resource management in

terms of file system and local devices. Taken together these two layers become the platform on top of which

specialized software is deployed to turn a set of networked computers into a distributed system

 The middleware layer leverages such services to build a uniform environment for the development and

deployment of distributed applications. By relying on the services offered by the operating system, the

middleware develops its own protocols, data formats, and programming language or frameworks for the

development of distributed applications. All of them constitute a uniform interface to distributed application

developers that is completely independent from the underlying operating system and hides all the

heterogeneities of the bottom layers.

 The top of the distributed system stack is represented by the applications and services designed and

developed to use the middleware. These can serve several purposes and often expose their features in the

form of graphical user interfaces (GUIs) accessible locally or through the Internet via a Web browser.

Figure 2.11 shows an example of how the general reference architecture of a distributed system is

contextualized in the case of a cloud computing system.

Page 9 of 15

 Hardware and operating system layers make up the bare-bone infrastructure of one or more datacenters,

where racks of servers are deployed and connected together through high-speed connectivity. This

infrastructure is managed by the operating system, which provides the basic capability of machine and

network management.

 The core logic is then implemented in the middleware that manages the virtualization layer, which is

deployed on the physical infrastructure in order to maximize its utilization and provide a customizable

runtime environment for applications.

 The middleware provides different facilities to application developers according to the type of services sold

to customers. These facilities, offered through Web 2.0-compliant interfaces, range from virtual

infrastructure building and deployment to application development and runtime environment

Q7) Discuss the cloud deployment model and cloud system across all market segments

Cloud computing is helping enterprises, governments, public and private institutions, and research

organizations shape more effective and demand-driven computing systems. Access to, as well as integration

of, cloud computing resources and systems is now as easy as performing a credit card transaction over the

Internet. Practical examples of such systems exist across all market segments:

• Large enterprises can offload some of their activities to cloud-based systems. Ex., the New York

Times has converted its digital library of past editions into a Web-friendly format using AWS

• Small enterprises and start-ups can afford to translate their ideas into business results more

quickly, without excessive up-front costs. Ex. Animoto is a company that creates videos out of

images, music, and video fragments submitted by users. Animoto does not own a single server and

bases its computing infrastructure entirely on Amazon Web Services, which are sized on demand

according to the overall workload to be processed.

• System developers can concentrate on the business logic rather than dealing with the complexity

of infrastructure management and scalability. Ex. Little Fluffy Toys is a company in London that has

developed a widget providing users with information about nearby bicycle rental services. The

company has managed to back the widget’s computing needs on GoogleAppEngine and be on the

market in only one week.

Page 10 of 15

• End users can have their documents accessible from everywhere and any device. Ex.Apple iCloud is

a service that allows users to have their documents stored in the Cloud and access them from any

device users connect to it.

Cloud Deployment Models

The three major models for deploying and accessing cloud computing environments are public clouds,

private/enterprise clouds, and hybrid clouds.

Public clouds are the most common deployment models in which necessary IT infrastructure (e.g.,

virtualized datacenters) is established by a third-party service provider that makes it available to any

consumer on a subscription basis. Such clouds are appealing to users because they allow users to quickly

leverage compute, storage, and application services. In this environment, users’ data and applications are

deployed on cloud datacenters on the vendor’s premises.

 Large organizations that own massive computing infrastructures can still benefit from cloud computing by

replicating the cloud IT service delivery model in-house. This idea has given birth to the concept of private

clouds as opposed to public clouds. The use of cloud-based in-house solutions is also driven by the need to

keep confidential information within an organization’s premises. Institutions such as governments and banks

that have high security, privacy, and regulatory concerns prefer to build and use their own private or

enterprise clouds.

 Whenever private cloud resources are unable to meet users’ quality-of-service requirements, hybrid

computing systems, partially composed of public cloud resources and privately owned infrastructures, are

created to serve the organization’s needs. These are often referred as hybrid clouds, which are becoming a

common way for many stakeholders to start exploring the possibilities offered by cloud computing

Q8) Discuss the most important model for message-based communication.

Models for message-based communication

• Point-to-point message model This model organizes the communication among single components. Each

message is sent from one component to another, and there is a direct addressing to identify the message

receiver. In a point-to-point communication model it is necessary to know the location of or how to address

Page 11 of 15

another component in the system. There is no central infrastructure that dispatches the messages, and the

communication is initiated by the message sender. It is possible to identify two major subcategories: direct

communication and queue-based communication. In the former, the message is sent directly to the receiver

and processed at the time of reception. In the latter, the receiver maintains a message queue in which the

messages received are placed for later processing. The point-topoint message model is useful for

implementing systems that are mostly based on one-to-one or many-to-one communication.

• Publish-and-subscribe message model This model introduces a different strategy, one that is based on

notification among components. There are two major roles: the publisher and the subscriber. The former

provides facilities for the latter to register its interest in a specific topic or event. Specific conditions holding

true on the publisher side can trigger the creation of messages that are attached to a specific event. A

message will be available to all the subscribers that registered for the corresponding event. There are two

major strategies for dispatching the event to the subscribers:

o Push strategy. In this case it is the responsibility of the publisher to notify all the subscribers— for

example, with a method invocation.

o Pull strategy. In this case the publisher simply makes available the message for a specific event, and

it is responsibility of the subscribers to check whether there are messages on the events that are

registered.

The publish-and-subscribe model is very suitable for implementing systems based on the oneto-many

communication model and simplifies the implementation of indirect communication patterns. It is, in

fact, not necessary for the publisher to know the identity of the subscribers to make the

communication happen.

• Request-reply message model The request-reply message model identifies all communication models in

which, for each message sent by a process, there is a reply. This model is quite popular and provides a

different classification that does not focus on the number of the components involved in the communication

but rather on how the dynamic of the interaction evolves. Point-to-point message models are more likely to

be based on a request-reply interaction, especially in the case of direct communication. Publishand-

subscribe models are less likely to be based on request-reply since they rely on notifications

Q9) Discuss the vision and era of cloud computing

The vision of cloud computing

Cloud computing allows anyone with a credit card to provision virtual hardware, runtime environments, and

services. These are used for as long as needed, with no up-front commitments required.

The entire stack of a computing system is transformed into a collection of utilities, which can be provisioned

and composed together to deploy systems in hours rather than days and with virtually no maintenance costs.

Previously, the lack of effective standardization efforts made it difficult to move hosted services from one

vendor to another.

The long-term vision of cloud computing is that IT services are traded as utilities in an open market, without

technological and legal barriers. In this cloud marketplace, cloud service providers and consumers, trading

cloud services as utilities, play a central role.

Page 12 of 15

Many of the technological elements contributing to this vision already exist. Different stakeholders leverage

clouds for a variety of services.

The need for ubiquitous storage and compute power on demand is the most common reason to consider

cloud computing.

A scalable runtime for applications is an attractive option for application and system developers that do not

have infrastructure or cannot afford any further expansion of existing infrastructure.

The capability for Webbased access to documents and their processing using sophisticated applications is

one of the appealing factors for end users.

Vision of cloud computing is that in the near future it will be possible to find the solution that matches our

needs by simply entering our request in a global digital market that trades cloud computing services.

The existence of such a market will enable the automation of the discovery process and its integration into

existing software systems, thus allowing users to transparently leverage cloud resources in their applications

and systems.

The existence of a global platform for trading cloud services will also help service providers become more

visible and therefore potentially increase their revenue. A global cloud market also reduces the barriers

between service consumers and providers.

Eras of computing

The sequential computing era began in the 1940s; the parallel (and distributed) computing era followed it

within a decade

Page 13 of 15

The four key elements of computing developed during these eras are architectures, compilers, applications,

and problem-solving environments. The computing era started with a development in hardware

architectures, which actually enabled the creation of system software—particularly in the area of compilers

and operating systems—which support the management of such systems and the development of

applications. The development of applications and systems are the major element of interest to us, and it

comes to consolidation when problem-solving environments were designed and introduced to facilitate and

empower engineers. This is when the paradigm characterizing the computing achieved maturity and became

mainstream. Moreover, every aspect of this era underwent a three-phase process: research and development

(R&D), commercialization, and commoditization.

Q10) Explain the system architectural styles
System architectural styles cover the physical organization of components and processes over a distributed

infrastructure

Client/server

This architecture is very popular in distributed computing and is suitable for a wide variety of applications.

As depicted in Figure 2.12, the client/server model features two major components: a server and a client.

These two components interact with each other through a network connection using a given protocol. The

communication is unidirectional: The client issues a request to the server, and after processing the request

the server returns a response. There could be multiple client components issuing requests to a server that is

passively waiting for them. Hence, the important operations in the client-server paradigm are request, accept

(client side), and listen and response (server side).

. For the client design, we identify two major models:
• Thin-client model. In this model, the load of data processing and transformation is put on the server side,

and the client has a light implementation that is mostly concerned with retrieving and returning the data it is

being asked for, with no considerable further processing.

• Fat-client model. In this model, the client component is also responsible for processing and transforming the

data before returning it to the user, whereas the server features a relatively light implementation that is

mostly concerned with the management of access to the data.

Page 14 of 15

Two-tier architecture

 This architecture partitions the systems into two tiers, which are located one in the client component and the

other on the server. The client is responsible for the presentation tier by providing a user interface; the server

concentrates the application logic and the data store into a single tier. The server component is generally

deployed on a powerful machine that is capable of processing user requests, accessing data, and executing

the application logic to provide a client with a response. This architecture is suitable for systems of limited

size and suffers from scalability issues

 Three-tier architecture/N-tier architecture

The three-tier architecture separates the presentation of data, the application logic, and the data storage into

three tiers. This architecture is generalized into an N-tier model in case it is necessary to further divide the

stages composing the application logic and storage tiers. This model is generally more scalable than the two-

tier one because it is possible to distribute the tiers into several computing nodes, thus isolating the

performance bottlenecks. At the same time, these systems are also more complex to understand and manage.

A classic example of three-tier architecture is constituted by a medium-size Web application that relies on a

relational database management system for storing its data. In this scenario, the client component is

represented by a Web browser that embodies the presentation tier, whereas the application server

encapsulates the business logic tier, and a database server machine (possibly replicated for high availability)

maintains the data storage. Application servers that rely on third-party (or external) services to satisfy client

requests are examples of N-tiered architectures.

Peer-to-peer

The peer-to-peer model, depicted in Figure 2.13, introduces a symmetric architecture in which all the

components, called peers, play the same role and incorporate both client and server capabilities of the

client/server model.

More precisely, each peer acts as a server when it processes requests from other peers and as a client when it

issues requests to other peers. With respect to the client/ server model that partitions the responsibilities of

Page 15 of 15

the IPC between server and clients, the peer-topeer model attributes the same responsibilities to each

component. Therefore, this model is quite suitable for highly decentralized architecture, which can scale

better along the dimension of the number of peers.

The disadvantage of this approach is that the management of the implementation of algorithms is more

complex than in the client/server model. The most relevant example of peer-to-peer systems is constituted

by file-sharing applications such as Gnutella, BitTorrent, and Kazaa. Despite the differences among these

networks in coordinating nodes and sharing information on the files and their locations, all of them provide

a user client that is at the same time a server providing files to other peers and a client downloading files

from other peers. To address an incredibly large number of peers, different architectures have been designed

that divert slightly from the peer-to-peer model. For example, in Kazaa not all the peers have the same role,

and some of them are used to group the accessibility information of a group of peers. Another interesting

example of peer-to-peer architecture is represented by the Skype network

