
Page 1 of 20

Internal Assessment Test II – April 2023

Operating System Concepts Sub Code: 22MCA12

24/04/23 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Scheme

1. What do you mean by Critical Section problem? Illustrate Peterson’s solution for a

critical section problem.

CS problem-3 marks

CS structure-2 marks

Algorithm-5 marks

OR

2.What are Semaphores? Explain the process of implementation of a Semaphore with an

example.

Semaphore definition-2 marks

Synatax-3 marks

Example-3 marls

Implementation-2 marks

3.Explain the readers-writers problem and give a solution using semaphores.

Problem-2 marks

Algorithm- 8 marks

OR

4.Explain the producer-consumer problem and give a solution using semaphores.

Problem-2 marks

Algorithm- 8 marks

5.What are monitors? Explain in detail with syntax.

Definition- 2 marks

Syntax-3 marks

Diagram-3 marks

Implementation- 2marks

 OR

6.What is a deadlock? What are the necessary conditions for a deadlock to occur?

Definition-2 marks

Each-4 marks

7.Explain how resource allocation graph can be used find deadlocks with examples.

RAG- 4 marks

Detection methods-6 marks

 OR

8.With neat diagrams explain Resource Allocation graph.

Page 2 of 20

Notations-4 marks

Explanation with ex-6 marks

9. Write and explain Banker’s algorithm with an example.

Algorithm- 7 marks

Ex-3 marks

 OR

10. What are the various approaches used in Deadlock prevention.

 Prevention approach- 2marks

Each- 2 marks

SOLUTION

1. What do you mean by Critical Section problem? Illustrate Peterson’s solution for a

critical section problem.

Critical-Section Problem

• Critical-section is a segment-of-code in which a process may be

→ changing common variables

→ updating a table or

→ writing a file.

• Each process has a critical-section in which the shared-data is accessed.

• General structure of a typical process has following (Figure 2.12):

1) Entry-section

● Requests permission to enter the critical-section.

2) Critical-section

● Mutually exclusive in time i.e. no other process can execute in its critical-section.

3) Exit-section

● Follows the critical-section.

4) Remainder-section

Figure 2.12 General structure of a typical process

• Problem statement:

―Ensure that when one process is executing in its critical-section, no other process is to

be allowed to execute in its critical-section‖.

• A solution to the problem must satisfy the following 3 requirements:

1) Mutual Exclusion:

● No more than one process can be in critical-section at a given time.

2) Progress:

● When no process is in the critical section, any process that requests entry into the

critical section must be permitted without any delay..

3) Bounded Waiting (No starvation):

● There is an upper bound on the number of times a process enters the critical section,

Page 3 of 20

while another is waiting.

• Two approaches used to handle critical-sections:

1) Preemptive Kernels

● Allows a process to be preempted while it is running in kernel-mode.

● More suitable for real-time proframming

2) Non-preemptive Kernels

● Does not allow a process running in kernel-mode to be preempted as it is free from

race conditions on kernel data structures, as only one process is active in the kernel at a

time.

Peterson’s Solution

*****Detailed understanding: https://nptel.ac.in/courses/106106144/26*****

• This is a classic software-based solution to the critical-section problem.

• This is limited to 2 processes.

• The 2 processes alternate execution between

→ critical-sections and

→ remainder-sections.

do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 critical section

 flag[i] = FALSE;

 remainder section

 } while (TRUE);

• The 2 processes (say i & j)share two globally defined variables:

‘turn’ – indicates whose turn it is to enter its critical-section.

(i.e., if turn==i, then process Pi is allowed to execute in its critical-section).

‘flag’ – indicates if a process is ready to enter its critical-section.

(i.e. if flag[i]=true, then Pi is ready to enter its critical-section).

● The following code shows the structure of process Pi in Peterson’s solution:

UNLOCK LOCK

Page 4 of 20

• To enter the critical-section,

→ firstly, process Pi sets flag[i] to be true and

→ then sets turn to the value j.

• If both processes try to enter at the same time, turn will be set to both i and j at roughly

the same time.

• The final value of turn determines which of the 2 processes is allowed to enter its

critical-section first.

• To prove that this solution is correct, we show that:

1) Mutual-exclusion is preserved:

• Observation1: Pi enters the CS only if flag[j]== false or turn ==i.

• Observation2: If both processes can be executing in their CSs at the same time, then

flag[i]==flag[j]==true.

These two observations imply that Pi and Pj could not have successfully executed their

while statements at about the same time, since the value of turn can be either i or j but

cannot be both.

Hence, the process which sets ‘turn’ first will execute and Mutual Exclusion is

preserved.

2) The progress requirement & The bounded-waiting requirement is met:

• The process which executes while statement first (say Pi), doesn’t change the value of

turn. So other process (Say Pj) will enter the CS (Progress) after at most one entry

(Bounded Waiting)

2. What are Semaphores? Explain the process of implementation of a Semaphore with an

example.

Semaphores

*****Detailed understanding: https://nptel.ac.in/courses/106106144/30*****

• A semaphore is a synchronization-tool.

• It used to control access to shared-variables so that only one process may at any point

in time change the value of the shared-variable.

• A semaphore(S) is an integer-variable that is accessed only through 2 atomic-

operations:

1) wait() and

2) signal().

• wait() is termed P ("to test or decrement”) signal() is termed V ("to increment").

Definition of wait(): Definition of signal():

• When one process modifies the semaphore-value, no other process can simultaneously

modify that same semaphore-value.

Semaphore Usage:

a) Binary Semaphore

● The value of a semaphore can range only between 0 and 1.

● On some systems, binary semaphores are known as mutex locks, as they are locks

that provide mutual-exclusion.

● Used for two processes

Page 5 of 20

b) Counting Semaphore:

● The value of a semaphore can ranges over an unrestricted domain

● Used for multiple processes

wait (s) {

 while s <= 0 // no-op

 s = s -1

 }

signal (s) {

 s = s+1

 }

Semaphore mutex; // initialized to 1

do {

 wait (mutex);

 // Critical Section

 signal (mutex);

 // remainder section

 } while (TRUE);

Examples of Semaphore Usage:

1) Solution for Critical-section Problem using Binary Semaphores

• Binary semaphores can be used to solve the critical-section problem for multiple

processes.

• The ‗n‘ processes share a semaphore mutex initialized to 1

Mutual-exclusion implementation with semaphores

2) Use of Counting Semaphores

• Counting semaphores can be used to control access to a given resource consisting of a

finite number o£ instances.

• The semaphore is initialized to the number of resources available.

• Each process that wishes to use a resource performs a wait() operation on the

semaphore (thereby decrementing the count).

• When a process releases a resource, it performs a signal() operation (incrementing the

count).

• When the count for the semaphore goes to 0, all resources are being used.

• After that, processes that wish to use a resource will block until the count becomes

greater than 0.

3) Solving Synchronization Problems

• Semaphores can also be used to solve synchronization problems.

• For example, consider 2 concurrently running-processes:

● P1 with a statement S1 and P2 with a with a statement S2

• Suppose we require that S2 be executed only after S1 has completed.

Page 6 of 20

• We can implement this scheme readily

→ by letting P1 and P2 share a common semaphore synch initialized to 0, and

→ by inserting following statements in process P1:

S1;

Signal(synch);

→ by inserting following statements in process P2:

Wait(synch);

S2;

● Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked

signal (synch), which is after statement S1 has been executed.

3. Explain the readers-writers problem and give a solution using semaphores.

1) The Readers-Writers Problem

• A data set is shared among a number of concurrent processes.

• Readers are processes which want to only read the database (DB).

Writers are processes which want to update (i.e. to read & write) the DB.

• Problem:

● Obviously, if 2 readers can access the shared-DB

simultaneously without any problems.

● However, if a writer & other process

(either a reader or a writer) access the shared-DB

simultaneously, problems may arise.

Solution:

● The writers must have exclusive access to the shared-DB while writing to the DB.

• Shared-data

where,

¤ mutex is used to ensure mutual-exclusion when the variable readcount is

updated.

¤ wrt is common to both reader and writer processes.

wrt is used as a mutual-exclusion semaphore for the writers.

wrt is also used by the first/last reader that enters/exits the critical-section.

¤ readcount counts no. of processes currently reading the object.

Initialization

mutex = 1, wrt = 1, readcount = 0

Page 7 of 20

Writer Process: Reader Process:

• The readers-writers problem and its solutions are used to provide reader-writer locks

on some systems.

• The mode of lock needs to be specified:

1) read mode

● When a process wishes to read shared-data, it requests the lock in read mode.

2) write mode

● When a process wishes to modify shared-data, it requests the lock in write mode.

• Multiple processes are permitted to

concurrently acquire a lock in read mode, but

only one process may acquire the lock for

writing.

• These locks are most useful in the following situations:

1) In applications where it is easy to identify

→ which processes only read shared-data and

→ which threads only write shared-data.

2) In applications that have more readers than writers.

4. Explain the producer-consumer problem and give a solution using semaphores.

The Bounded-Buffer Problem

• The bounded-buffer problem is related to the producer consumer problem.

• There is a pool of n buffers, each capable of holding one item.

• Shared-data

Page 8 of 20

where,

¤ mutex provides mutual-exclusion for accesses to the buffer-pool.

¤ empty counts the number of empty buffers.

¤ full counts the number of full buffers.

• The symmetry between the producer and the consumer.

¤ The producer produces full buffers for the consumer.

¤ The consumer produces empty buffers for the producer.

5. What are monitors? Explain in detail with syntax.

• Monitor is a high-level synchronization construct.

• It provides a convenient and effective mechanism for process synchronization.

Need for Monitors

• When programmers use semaphores incorrectly, following types of errors may

occur:

1) Suppose that a process interchanges the order in which the

wait() and signal() operations on

Page 9 of 20

the semaphore ―mutex‖ are executed, resulting in the following execution:

● In this situation, several processes may be

executing in their critical-sections simultaneously,

violating the mutual-exclusion requirement.

2) Suppose that a process replaces signal(mutex) with wait(mutex). That is,

it executes

● In this case, a deadlock will occur.

3) Suppose that a process omits the wait(mutex), or the signal(mutex), or

both.

● In this case, either mutual-exclusion is violated or a deadlock will occur.

Monitors Usage

• A monitor type presents a set of programmer-defined

operations that are provided to ensure mutual-exclusion within the

monitor.

• It also contains (Figure 2.23):

→ declaration of variables

→ bodies of procedures(or functions).

• A procedure defined within a monitor can access only those variables

declared locally within the monitor and its formal-parameters.

Page 10 of 20

Similarly, the local-variables of a monitor can be accessed by only the

local-procedures.

Figure 2.23 Syntax of a monitor

• Only one process at a time is active within the monitor (Figure 2.24).

• To allow a process to wait within the monitor, a condition variable must be

declared, as

• Condition variable can only be used with the following 2 operations (Figure

2.25):

1) x.signal()

● This operation resumes exactly one

suspended process. If no process is suspended, then

the signal operation has no effect.

2) x.wait()

● The process invoking this operation is suspended

Page 11 of 20

until another process invokes x.signal().

Figure 2.24 Schematic view of a monitor Figure 2.25 Monitor with

condition variables

• Suppose when the x.signal() operation is invoked by

a process P, there exists a suspended process Q associated

with condition x.

• Both processes can conceptually continue with their execution. Two possibilities

exist:

1) Signal and wait

● P either waits until Q leaves the monitor or waits for another condition.

2) Signal and continue

● Q either waits until P leaves the monitor or waits for another condition.

6. What is a deadlock? What are the necessary conditions for a deadlock to occur?

Deadlocks

• Deadlock is a situation where a set of processes are blocked because each process is

→ holding a resource and

→ waiting for another resource held by some other process.

• Real life example:

When 2 trains are coming toward each other on same track and

there is only one track, none of the trains can move once they are

in front of each other.

• Similar situation occurs in operating systems when there are two or

more processes hold some resources and wait for resources held by

other(s).

• Here is an example of a situation where deadlock can occur (Figure 3.1).

Figure 3.1

Deadlock

Situation

Deadlock Characterization

• In a deadlock, processes never finish executing, and

system resources are tied up, preventing other jobs from starting.

1) Necessary Conditions

Page 12 of 20

• There are four conditions that are necessary to achieve deadlock:

i) Mutual Exclusion

At least one resource must be held in a non-sharable mode.

i.e., If one process holds a non-sharable resource and if any other

process requests this resource, then the requesting-process must

wait for the resource to be released.

ii) Hold and Wait

□A process must be simultaneously

→ holding at least one resource and

→ waiting to acquire additional resources held by the other process.

iii) No Preemption

Resources cannot be preempted.

A resource can be released voluntarily by the process holding it.

iv) Circular Wait

 A set of processes { P0, P1, P2, . .

., PN } must exist

P0 is waiting for a resource that is held by P1, P1 is waiting for a resource

that is held by P2 ….and PN is waiting for a resource held by P0.

7. Explain how resource allocation graph can be used find deadlocks with examples.

 Deadlock Detection

• If a system does not use deadlock-prevention or

deadlock-avoidance algorithm then a deadlock may occur.

• In this environment, the system must provide

1) An algorithm to examine the system-state to determine whether a

deadlock has

occurred.

2) An algorithm to recover from the deadlock.

1) Single Instance of Each Resource Type

• If all the resources have only a single instance, then

deadlock detection-algorithm can be defined using a wait-for-

graph.

• The wait-for-graph is applicable to only a single instance of a resource type.

• A wait-for-graph (WAG) is a variation of the resource-allocation-graph.

• The wait-for-graph can be obtained from the resource-allocation-graph by

→ removing the resource nodes and

→ collapsing the appropriate edges.

Page 13 of 20

● An edge from Pi to Pj implies that process Pi is

waiting for process Pj to release a resource that Pi

needs.

• An edge Pi → Pj exists if and only if the corresponding graph contains two

edges

1) Pi → Rq and

2) Rq → Pj.

• For example:

Consider resource-allocation-graph shown

in Figure 3.6 Corresponding wait-for-

graph is shown in Figure 3.7.

Figure 3.6 Resource-allocation-graph Figure 3.7

Corresponding wait-for-graph.

• A deadlock exists in the system if and only if the wait-for-graph contains a

cycle.

• To detect deadlocks, the system needs to

→ maintain the wait-for-graph and

→ periodically execute an algorithm that searches for a cycle in the

graph.

2) Several Instances of a Resource Type

• The wait-for-graph is applicable to only a single instance of a resource type.

• Problem: However, the wait-for-graph is not applicable to a

multiple instance of a resource type.

• Solution: The following detection-algorithm can be used for a

multiple instance of a resource type.

• Assumptions:

Let ‘n’ be the number of processes in the system Let ‘m’ be the number of

resources types.

Page 14 of 20

• Following data structures are used to implement this algorithm.

1) Available [m]

i. This vector indicates the no. of available resources of each

type.

ii. If Available[j]=k, then k instances of resource type Rj is

available.

2) Allocation [n][m]

• This matrix indicates no. of resources currently allocated to

each process.

• If Allocation[i,j]=k, then Pi is currently allocated k instances

of Rj.

3) Request [n][m]

i. This matrix indicates the current request of each process.

ii. If Request [i, j] = k, then process Pi is

requesting k more instances of resource

type Rj.

This algorithm requires an order mxn
2
 operations to detect whether the

system is in a deadlocked state

8. With neat diagrams explain Resource Allocation graph.

Resource-Allocation-Graph

• The resource-allocation-graph (RAG) is a directed graph

that can be used to describe the deadlock situation.

• RAG consists of a

→ set of vertices (V) and

→ set of edges (E).

• V is divided into two types of nodes

ii) P={P1,P2… Pn} i.e., set consisting of all active processes in the system.

iii) R={R1,R2… Rn} i.e., set consisting of all resource types in the system.

• E is divided into two types of edges:

1) Request Edge

□A directed-edge Pi → Rj is called a request edge.

□Pi → Rj indicates that process Pi has requested a resource Rj.

2) Assignment Edge

□A directed-edge Rj → Pi is called an assignment edge.

□Rj → Pi indicates that a resource Rj has been allocated to process Pi.

• Suppose that process Pi requests resource Rj.

Here, the request for Rj from Pi can be granted only if the

converting request-edge to assignment-edge do not form a

cycle in the resource-allocation graph.

Page 15 of 20

• Pictorially,

→ We represent each process Pi as a circle.

→ We represent each resource-type Rj as a rectangle.

• As shown in below figures, the RAG illustrates the following 3 situation (Figure

3.3):

1) RAG with a deadlock

2) RAG with a cycle and deadlock

3) RAG with a cycle but no deadlock

(1) Resource allocation Graph (2) with a deadlock (3) with cycle but

no deadlock

Figure 3.3 Resource

allocation graphs

1) If a graph contains no cycles, then the system is not deadlocked.

2) If the graph contains a cycle then a deadlock may exist.

Therefore, a cycle means deadlock is possible, but not necessarily present.

9. Write and explain Banker’s algorithm with an example.

1) Banker's Algorithm

● The Banker's Algorithm gets its name because it is a method

that bankers could use to assure that when they lend out

resources they will still be able to satisfy all their clients. (A

banker won't loan out a little money to start building a house

unless they are assured that they will later be able to loan out the

rest of the money to finish the house.)

● When a process starts up, it must state in advance the

maximum allocation of resources it may request, up to the

amount available on the system.

● When a request is made, the scheduler determines whether

granting the request would leave the system in a safe state. If

not, then the process must wait until the request can be granted

Page 16 of 20

safely.

• If the system in a safe state,

the resources are allocated;

else

the process must wait until some other process releases enough

resources.

• Assumptions:

Let n = number of processes in the system Let m = number of resources

types.

• Following data structures are used to implement the banker’s algorithm.

i. Available [m]

• This vector indicates the no. of available resources of each

type.

• If Available[j] =k, then k instances of resource type Rj is

available.

ii. Max [n][m]

• This matrix indicates the maximum demand of each process

of each resource.

• If Max[i,j]=k, then process Pi may request at

most k instances of resource type Rj.

iii. Allocation [n][m]

• This matrix indicates no. of resources currently allocated to

each process.

• If Allocation[i,j]=k, then Pi is currently allocated k instances

of Rj.

iv. Need [n][m]

• This matrix indicates the remaining resources need of each

process.

• If Need [i,j]=k, then Pi may need k more instances

of resource Rj to complete its task.

• So, Need[i,j] = Max[i,j] - Allocation[i]

• The Banker’s algorithm has two parts:

• Safety Algorithm

• Resource – Request Algorithm

i. Safety Algorithm

• This algorithm is used for finding out whether a system is in safe state or

not.

• Assumptions:

Work is a working copy of the available

resources, which will be modified during the

analysis. Finish is a vector of boolean values

indicating whether a particular process can

Page 17 of 20

finish.

 Request = request vector for process Pi. If Requesti [j] = k then process Pi

wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since

process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since

resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as

follows:

 Available = Available – Request;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is restored

Safety Algorithm:

Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

10. What are the various approaches used in Deadlock prevention.

Deadlock-Prevention:

• Deadlocks can be eliminated by preventing at least one of the four required

conditions:

1) Mutual exclusion

2) Hold-and-wait

3) No preemption

4) Circular-wait.

Page 18 of 20

1) Mutual Exclusion

• This condition must hold for non-sharable resources.

• For example:

A printer cannot be simultaneously shared by several processes.

• On the other hand, shared resources do not lead to deadlocks.

• For example:

Simultaneous access can be granted for read-only file.

• A process never waits for accessing a sharable resource.

□In general, we cannot prevent deadlocks by denying the

mutual-exclusion condition because some resources are non-

sharable by default.

2) Hold and Wait

• To prevent this condition, ensure that – Whenever a process

requests a resource, it does not hold any other resources.

• There are several solutions to this problem.

• For example:

Consider a process that

→ copies the data from a tape drive to the disk

→ sorts the file and

→ then prints the results to a printer.

Protocol-1

● Each process must be allocated with all of its

resources before it begins execution.

● All the resources (tape drive, disk files and

printer) are allocated to the process at the

beginning.

Protocol-2

□ A process must request a resource only when the process has none.

□ Initially, the process is allocated with tape drive and disk file.

□ The process performs the required operation and releases

both tape drive and disk file.

□ Then, the process is again allocated with disk file and the printer

□ Again, the process performs the required operation &

releases both disk file and the printer.

• Disadvantages of above 2 methods:

i. Resource utilization may be low, since resources

may be allocated but unused for a long period.

ii. Starvation is possible.

3) No Preemption:

• To prevent this condition: the resources must be preempted.

• There are several solutions to this problem.

Page 19 of 20

Protocol-1

● If a process is holding some resources and requests

another resource that cannot be immediately allocated

to it, then all resources currently being held are

preempted.

● The preempted resources are added to the list of

resources for which the process is waiting.

● The process will be restarted only when it regains the

old resources and the new resources that it is

requesting.

Protocol-2

● When a process request resources, we check whether they are available

or not.

These 2 protocols may be applicable for

resources, whose states are easily saved and

restored, such as registers and memory.

4) Circular-Wait

• Deadlock can be prevented by using the following 2 protocol:

Protocol-1

o Assign numbers all resources.

o Require the processes to request resources only in

increasing/decreasing order.

Protocol-2

o Require that whenever a process requests

a resource, it has released resources with a

lower number.

• One big challenge in this scheme is determining the

Page 20 of 20

relative ordering of the different resources.

Side effects of preventing deadlocks:

● Low device utilization

● Reduced system throughput

