
 

CMR 

INSTITUTE OF                        

TECHNOLOGY 

                                  

 

USN           

Internal Assessment Test 2 – February 2023 

Sub: BIG DATA ANALYTICS 
Sub 

Code: 
20MCA352 

Date: 08/02/2023 Duration: 90 min’s Max Marks: 50 Sem: III Branch: MCA 
 

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module 
 

  

 MARKS 

OBE 

 

CO 

 

RBT 

 

1 
PART I 

Write briefly about the following : 

a) History of Hadoop. 
b) Hadoop Releases. 

                                                                    OR 

 

 

[10] CO3 L2 

2 What are Grid Computing and Volunteer Computing? List their differences from 

MapReduce. 

[10] 
CO3 L3 

 

3 
PART II 

Briefly explain what is HDFS? Discuss about its strengths and weaknesses. 

                                                                   OR 

 

[10] CO4 L2 

4 

 

Explain the following HDFS concepts. 

a) Blocks                                 b) Data Node and Name Node. 

[10] 
CO4 L2 

 

 

CMR 

INSTITUTE OF                        

TECHNOLOGY 

                                  

 

USN           

Internal Assessment Test 2 – February 2023 

Sub: BIG DATA ANALYTICS 
Sub 

Code: 
20MCA352 

Date: 08/02/2023 Duration: 90 min’s Max Marks: 50 Sem: III Branch: MCA 
 

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module 
 

  

            MARKS 

OBE 

 

CO 

 

RBT 

1 PART I 

Write briefly about the following : 

c) History of Hadoop 
d) Hadoop Releases. 

OR 

 

 

      [10] CO3 L2 

2 What are Grid Computing and Volunteer Computing? List their differences from Map 

Reduce. 

[10] 
CO3 L3 

 

3 
PART II 

Briefly explain what is HDFS? Discuss about its strengths and weaknesses. 

OR 

 

 

      [10] 
CO4 L2 

4 

 

Explain the following HDFS concepts. 

b)        a) Blocks                                 b) Data Node and Name Node. 

[10] 
CO4 L2 

 



 

 

 

5 

PART III 

a) On what regards or rather, how is MapReduce different from RDBMS? 

b) Explain HDFS Federation and HDFS High Availability. 

OR 

 

 

[4+6] 

 

CO3 

& 

CO4 

 

L2 

6 List and very briefly explain the various components of Hadoop Ecosystem.   

[10]  CO3 L2 

 

 

7 

PART IV 

 

How will you read data using the File System API? 

 

OR 

 

[10] 

 

CO4 

 

L4 

 

8 

  

Write the code for How will you read data from a Hadoop URL. 

 

[10] 

 

CO4 

 

L4 

 

9 

PART V 

Write a code to display files from a Hadoop file system on standard output? 

 

                                                                                      OR 

 

 

[10] CO4 L4 

10 Write a code to copy a local file to a Hadoop filesystem? [10] CO4 L4 

 

 

 

 

 

 

 

 

5 

PART III 

 

a) On what regards or rather, how is MapReduce different from RDBMS? 

b) Explain HDFS Federation and HDFS High Availability. 

OR 

 

 

[4+6] 
 

CO3 

& 

CO4 

 

L2 

6 List and very briefly explain the various components of Hadoop Ecosystem.   

[10]  CO3 L2 

 

 

7 

PART IV 

 

How will you read data using the File System API? 

OR 

 

[10] 

 

CO4 

 

L4 

 

8 

  

Write the code for How will you read data from a Hadoop URL. 

 

[10] 

 

CO4 

 

L4 

 

9 

PART V 

Write a code to display files from a Hadoop file system on standard output? 

 

                                                                                      OR 

 

 

[10] CO4 L4 

10 Write a code to copy a local file to a Hadoop filesystem? [10] CO4 L4 

 



IAT 2- Solution – Big Data Analytics – 20MCA352 

1.History of Hadoop 

 In 2002, Nutch was started 

 A working crawler and search system emerged 

 Its architecture wouldn’t scale to the billions of pages on the Web 

 In 2003, Google published a paper describing the architecture of Google’s distributed filesystem, 
GFS 

 In 2004, Nutch project implemented the GFS idea into the Nutch Distributed Filesystem, NDFS 

 In 2004, Google published the paper introducing MapReduce 

 In 2005, Nutch had a working MapReduce implementation in Nutch 

 By the middle of that year, all the major Nutch algorithms had been ported to run using 
MapReduce and NDFS 

 In Feb. 2006, Doug Cutting started an independent subproject of Lucene, called Hadoop 

 In Jan. 2006, Doug Cutting joined Yahoo! 

 Yahoo! Provided a dedicated team and the resources to turn Hadoop into a system at web scale 

 In Feb. 2008, Yahoo! announced its search index was being generated by a 10,000 core Hadoop 
cluster 

 In Apr. 2008, Hadoop broke a world record to sort a terabytes of data 

 In Nov. 2008, Google reported that its MapReduce implementation sorted one terabytes in 68 
seconds. 

 In May 2009, Yahoo! used Hadoop to sort one terabytes in 62 seconds 
 

b. Hadoop Releases 

There are a few active release series. The 1.x release series is a continuation of the 0.20 release series, and 

contains the most stable versions of Hadoop currently available. This series includes secure Kerberos 

authentication, which prevents unauthorized access to Hadoop data. Almost all production clusters use 

these releases, or derived versions (such as commercial distributions).The 0.22 and 0.23 release series are 

currently marked as alpha releases (as of early 2012), but this is likely to change by the time you read this as 

they get more real-world testing and become more stable (consult the Apache Hadoop releases page for the 

latest status). 0.23 includes several major new features: 

A new MapReduce runtime, called MapReduce 2, implemented on a new system called YARN (Yet Another 

Resource Negotiator), which is a general resource management system for running distributed applicati ons. 

MapReduce 2 replaces the classic runtime in previous releases. It is described in more depth in “YARN”.HDFS 

federation, which partitions the HDFS namespace across multiple namenodes to support clusters with very 

large numbers of files.HDFS high-availability, which removes the namenode as a single point of failure by 

supporting standby namenodes for failover. 

The following figure shows the configuration of Hadoop 1.0 and Hadoop 2.0. 



 

Table 1 covers features in HDFS and MapReduce. Other projects in the Hadoop ecosystem are 

continually evolving too, and picking a combination of components that work well together can be a 

challenge. 
Table 1. Features Supported by Hadoop Release Series

 
 

 

2.  Grid Computing:  can be defined as a network of computers working together to perform a task that would 

rather be difficult for a single machine. All machines on that network work under the same protocol to act as 

a virtual supercomputer. The task that they work on may include analyzing huge datasets or simulating 

situations that require high computing power. Computers on the network contribute resources like 

processing power and storage capacity to the network.  

Both Grid Computing and MapReduce are efficient and work well with the predominant computer intensive, 

but it comes a problem when nodes need to access large data volumes (hundreds of gigabytes), since 

network bandwidth is the bottleneck problem and compute becomes idle. When comes to the Ma pReduce it 

works very well even there is a need of accessing large data volumes even in hundreds of gigabytes.  

Volunteer Computing: Volunteer processing ventures work by breaking the issues they are attempting to 

settle into pieces called work units, which are sent to PCs around the globe to be dissected. For instance, 

a SETI@home work unit is about 0.35 MB of radio telescope information and takes hours or days to examine 

on a commonplace home PC. At the point when the investigation is finished, the results  are sent back to the 

server, and the customer gets another work unit. 

MapReduce also works in the similar way of breaking a problem into independent pieces that work in 

parallel. Volunteer computing problem is very CPU intensive,which makes it suitable fo r running on 

hundreds of thousands of computers across the world because the time to transfer the work unit is dwarfed 

by time to run the computation time.  Volunteers are donating CPU cycle not the bandwidth.  



3.  Hadoop Distributed File System(HDFS) is the core component or the backbone of Hadoop Ecosystem. HDFS is 
the one, which makes it possible to store different types of large data sets (i.e. structured, unstructured and 
semi structured data). HDFS creates a level of abstraction over the resources, from where we can see the 
whole HDFS as a single unit. It helps us in storing our data across various nodes and maintaining the log file 
about the stored data (metadata). 

 

Strengths of HDFS 

1. Very large files: There are Hadoop clusters running today that store petabytes of data. 

2. Streaming data access HDFS cares about the time to read the whole dataset than the latency of 
reading the first record. 

3. Commodity hardware Hadoop is designed to run on clusters of commodity hardware 
(commonly available hardware available from multiple vendors) for which the chance of node 
failure across the cluster is high. HDFS is designed to carry on working without a noticeable 
interruption to the user in the face of such failure. 

Weaknesses  of HDFS 

1. Low-latency data access: Applications that require low-latency access to data, in the tens of 
milliseconds range, will not work well with HDFS. 

2. Lots of small files: Since the namenode holds filesystem metadata in memory, the limit to the 
number of files in a filesystem is governed by the amount of memory on the namenode. As a 
rule of thumb, each file, directory, and block takes about 150 bytes.   So, while storing millions 
of files is feasible, billions is beyond the capability of current hardware. 
 

3. Multiple writers, arbitrary file modifications: Files in HDFS may be written to by a single writer. 
There is no support for multiple writers, or for modifications at arbitrary offsets in the file. 

 

4a.  Blocks: A disk has a block size, which is the minimum amount of data that it can read or write. 
Filesystems for a single disk build on this by dealing with data in blocks, which are an integral multiple of 
the disk block size. Filesystem blocks are typically a few kilobytes in size, while disk blocks are normally 
512 bytes. 

HDFS too has the concept of a block, but it is a much larger unit of 64 MB or 128MB by default. Like in a 
filesystem for a single disk, files in HDFS are broken into block-sized chunks, which are stored as 
independent units. Unlike a filesystem for a single disk, a file in HDFS that is smaller than a single block 
does not occupy a full blocks worth of underlying storage. There are tools to perform filesystem 
maintenance, such as df and fsck, that operate on the filesystem block level. 

 
Benefits of using block abstraction 

1. A file can be larger than any single disk in the network: There’s nothing that requires the blocks 
from a file to be stored on the same disk, so they can take advantage of any  of the disks in the 
cluster. In fact, it would be possible, if unusual, to store a single file on an HDFS cluster whose 
blocks filled all the disks in the cluster. 

2. Making the unit of abstraction a block rather than a file simplifies the storage subsystem: 
Simplicity is something to strive for all in all systems, but is especially important for a distributed 
system in which the failure modes are so varied. 

 
 



4b. A HDFS cluster has two types of node operating in a master-worker pattern: a namenode (the master) and a 
number of datanodes (workers). 

 
The Namenode manages the filesystem namespace. It maintains the filesystem tree and the metadata for 
all the files and directories in the tree. This information is stored persistently on the local disk in the form 
of two files: 

 The namespace image (fsImage) 

 The edit log 

The namenode also knows the datanodes on which all the blocks for a given file are located, however, it 
does not store block locations persistently, since this information is reconstructed from datanodes when 
the system starts. A client accesses the filesystem on behalf of the user by communicating with the 
namenode and datanodes. 

 
Datanodes are the workhorses of the filesystem. They store and retrieve blocks when they are told to 
(by clients or the namenode), and they report back to the namenode periodically with lists of blocks that 
they are storing. 

Without the namenode, the filesystem cannot be used. In fact, if the machine running the namenode 
were obliterated, all the files on the filesystem would be lost since there  would be  no way of knowing 
how to reconstruct the files from the blocks on the datanodes. For this reason, it is important to make 
the namenode resilient to failure, and Hadoop provides two mechanisms for this. 

 
1. The first way is to back up the files that make up the persistent state of the filesystem 

metadata. Hadoop can be configured so that the namenode writes its persistent state to 

multiple filesystems. These writes are synchronous and atomic. The usual configuration choice is 
to write to local disk as well as a remote NFS mount. 

 
2.    It is also possible to run a secondary namenode, which despite its name does not act as  a 

namenode. Its main role is to periodically merge the namespace image with the edit log to 
prevent the edit log from becoming too large. The secondary namenode usually runs on a 
separate physical machine, since it requires plenty of CPU and as much memory as the 
namenode to perform the merge. It keeps a copy of the merged namespace image, which can 
be used in the event of the namenode failing.  However, the state of the secondary namenode 
lags that of the primary, so in the event of total failure of the primary, data loss is almost 
certain. The usual course of action in this case is to copy the namenode’s metadata files that 
are on NFS to the secondary and run it as the new primary. 

 
5a. Differences between RDBMS and MapReduce are: 
 

# MapReduce RDBMS 

1 Good fit for problems that analyze the whole data set in a 
batch fashion 

RDBMS is good for point queries or updates, 
where the data set has been ordered to deliver 
low latency retrieval 

2 It suits well for applications where the data is 

written once and read many times 

Relational database is good for data that are 

continuously updated 

3 Works on semi-structured or unstructured data Operates on structured data 

4 Ex: spread sheets, images, text etc.. Ex: database tables, XML docs etc.. 



5 It is designed to interpret the data at processing time 
(Schema on Read) 

It is designed to interpret the data run time 
(Schema on Write) 

6 Normalization creates a problem in Hadoop because, it 
reading a record is non-local operation, instead Hadoop 
makes it possible to perform streaming reads and writes 

RDBMS data is often normalized to avoid 
redundancy and to retain integrity. 

7 MapReduce can process the data in parallel Parallel processing  is  not  true  for  SQL 

RDBMS queries 

 

5b.   HDFS Federation: The namenode keeps a reference to every file and block in the filesystem in memory, 
which means that on very large clusters with many files, memory becomes the limiting factor for scaling 
HDFS Federation, introduced in the 0.23 release series, allows a cluster to scale by adding namenodes, 
each of which manages a portion of the filesystem namespace. For  example, one namenode might 
manage all the files rooted under /user, say, and a second namenode might handle files under /share.  

Under federation, each namenode manages a namespace volume, which is made up of the metadata for the 
namespace, and a block pool containing all the blocks for the files in the namespace. Namespace volumes are 
independent of each other, which means namenodes do  not communicate with one another, and 
furthermore the failure of one namenode does not affect the availability of the namespaces managed by 
other namenodes. 

HDFS High-Availability : The combination of replicating namenode metadata on multiple filesystems, 
and using the secondary namenode to create checkpoints protects against data loss, but does not 
provide high- availability of the filesystem. The namenode is still a single point of failure (SPOF), since if it 
did fail, all clients-including MapReduce jobs-would be unable to read, write, or list files, because the 
namenode is the sole repository of the metadata and the file-to block mapping. In such an event the 
whole Hadoop system would effectively be out of service until a new namenode could be brought 
online. 
To recover from a failed namenode in this situation, an administrator starts a new primary namenode 
with one of the filesystem metadata replicas,  and configures  datanodes and clients to use this new 
namenode. The new namenode is not able to serve requests until it has 
 

i. loaded its namespace image into memory, 

ii. replayed its edit log, and 

iii. received enough block reports from the datanodes to leave safe mode. 

On large clusters with many files and blocks, the time it  takes for a namenode to start from  cold can be 
30 minutes or more. The long recovery time is a problem for routine maintenance too. In fact, since 
unexpected failure of the namenode is so rare, the case for planned downtime is actually more 
important in practice. 
The 0.23 release series of Hadoop remedies this situation by adding support for HDFS high- availability 
(HA). In this implementation there is a pair of- namenodes in an activestand by configuration. In the 
event of the failure of the active namenode, the standby takes over its duties to continue servicing client 
requests without a significant interruption. 
The architectural changes are needed to replace active name node with standby name node: 

i. The namenodes must use highly-available shared storage to share the edit log. When a 
standby namenode comes up it reads up to the end of the shared edit log to 
synchronize its state with the active namenode, and then continues to read new entries as 
they are written by the active namenode. 
 



ii. Datanodes must send block reports  to both namenodes since the block mappings  are 
stored in a namenode’s memory, and not on disk.Clients must be configured to handle 
namenode failover, which uses a mechanism that is transparent to users. 
 

iii. If the active namenode fails, then the standby can take over very quickly (in a few tens of 
seconds) since it has the latest state available in memory: both the latest edit log entries, 
and an up-to-date block mapping. The actual observed failover time will be longer in 
practice (around a minute or so), since the system needs to be conservative in deciding 
that the active namenode has failed. 
 

iv. In the unlikely event of the standby being down when the active fails, the administrator 
can still start the standby from cold. This is no worse than the non- HA case, and from an 
operational point of view it’s an improvement, since the process is a standard operational 
procedure built into Hadoop. 

6. The components of Hadoop 1.0 and Hadoop 2.0 are listed as follows: 

 Common – a set of components and interfaces for filesystems and I/O. 

 Avro – a serialization system for RPC and persistent data storage. 

 MapReduce – a distributed data processing model. MapReduce is a software framework which helps 
in writing applications that processes large data sets using distributed and parallel algorithms inside 
Hadoop environment. 

 YARN - YARN is responsible for allocating system resources to the various applications running in a 
Hadoop cluster and scheduling tasks to be executed on different cluster nodes. 

 HDFS – a distributed filesystem running on large clusters of machines. 

 Pig – a data flow language and execution environment for large datasets. It gives you a platform 
for building data flow for ETL (Extract, Transform and Load), processing and analyzing huge data 
sets. 

 Hive – a distributed data warehouse providing SQL-like query language. 

 HBase – HBase is an open source, non-relational distributed database. In other words, it is a NoSQL 
database.It supports all types of data and that is why, it’s capable of handling anything and 
everything inside a Hadoop ecosystem. 

 Mahout - Mahout provides an environment for creating machine learning applications which 
are scalable. 

 Apache Drill -SQL on Hadoop 

 ZooKeeper – a distributed, highly available coordination service. 

 Sqoop – Sqoop can import as well as export structured data from RDBMS or Enterprise data 
warehouses to HDFS or vice versa.. 

 Oozie - For Apache jobs, Oozie has been just like a scheduler. It schedules Hadoop jobs and binds 
them together as one logical work. 

 Flume- The Flume is a service which helps in ingesting unstructured and semi-structured data into 
HDFS. 

 Solr & Lucene - Searching & Indexing 

 Ambari - Provision, Monitor and Maintain cluster 
 



 
 7.  

public class FileSystemCat  

{ 

  public static void main(String[] args) throws Exception  

{ 

    String uri = args[0]; 

    Configuration conf = new Configuration(); 

    FileSystem fs = FileSystem.get(URI.create(uri), conf); 

    InputStream in = null; 

    try  

   { 

      in = fs.open(new Path(uri)); 

      IOUtils.copyBytes(in, System.out, 4096, false); 

    }  

finally  

{ 

      IOUtils.closeStream(in); 

} 

  } 

} 

 8.  

public class URLCat { 

     static  

    { 

        URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory()); 

    } 



   public static void main(String[] args) throws Exception  

   { 

     InputStream in = null; 

      try 

       { 

          in = new URL(args[0]).openStream(); 

          IOUtils.copyBytes(in, System.out, 4096, false); 

       }  

     finally  

     { 

           IOUtils.closeStream(in); 

       } 

  } 

} 

9. 

public class FileSystemDoubleCat { 

  public static void main(String[] args) throws Exception { 

    String uri = args[0]; 

    Configuration conf = new Configuration(); 

    FileSystem fs = FileSystem.get(URI.create(uri), conf); 

    FSDataInputStream in = null; 

    try { 

      in = fs.open(new Path(uri)); 

      IOUtils.copyBytes(in, System.out, 4096, false); 

      in.seek(0); // go back to the start of the file 

      IOUtils.copyBytes(in, System.out, 4096, false); 

    } finally { 



      IOUtils.closeStream(in); 

    } 

  } 

} 

10.  

public class FileCopyWithProgress { 

  public static void main(String[] args) throws Exception { 

    String localSrc = args[0]; 

    String dst = args[1]; 

    InputStream in = new BufferedInputStream(new FileInputStream(localSrc));  

    Configuration conf = new Configuration(); 

    FileSystem fs = FileSystem.get(URI.create(dst), conf); 

    OutputStream out = fs.create(new Path(dst), new Progressable() {  

      public void progress() { 

        System.out.print("."); 

      } }); 

    IOUtils.copyBytes(in, out, 4096, true); 

  } 

} 

 

 


