

CMR

INSTITUTE OF TECHNOLOGY

USN

Internal Assessment Test II – April 2023

Sub: Data Structures Sub Code:
22MCA1

3

Date

:
25/04/2023 Duration: 90 min’s

Max

Marks:

5

0

Sem

:
I

Branch

:
MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Part.

 PART I MARKS
OBE

CO RBT

1 Define Queue. Explain the different types of Queue, operations performed on
the queue and also list the applications of Queue.

 OR

[10]
CO3 L2

2 Define Recursion. Write a C program to implement Tower of Hanoi problem
using recursion and trace the output for 3 disks.

[5+5]
CO2 L2

3
 PART II

Design, develop, and execute a program in C to simulate the working of a
linear queue of integers using an array. Provide the following operations: a.

Insert b. Delete c. Display

OR

[10]

CO3 L3

4

What is Circular Queue? Write a program to insert and delete an item from
circular Queue.

[10]
CO3 L3

5
PART III

Write a C program to simulate the working of a singly linked list providing

the following operations: a. Insert begin/ insert last b. Delete from the
beginning/end c. Delete a given element (random) d. Display

 OR

[10] CO3 L3

6 What is Double ended Queues. Explain its type and operations performed on
Double ended Queue.

[10] CO4 L3

7
PART IV

Explain Static (stack) and Dynamic (heap) memory allocation with neat

diagram and also list the differences between static and dynamic memory

allocation.

OR

[10]

CO3 L2

8

Explain different types of linked list. What are the advantages of linked list
over arrays?

[10]
CO3 L2

9

PART V

Write a program to implement stack operations push(), pop() and Display()
using singly linked list. OR

[10]

CO4 L3

10 Explain the different functions used in C language for memory allocation and
management with example program.

[10]
CO3 L2

Solution

1. Define Queue. Explain the different types of Queue, operations performed on the queue and

also list the applications of Queue.

Definition

1. A queue can be defined as an ordered list which enables insert operations to be

performed at one end called REAR and delete operations to be performed at another

end called FRONT.

2. Queue is referred to be as First In First Out list.

3. For example, people waiting in line for a rail ticket form a queue.

Representation: Queue is the data structure that is similar to the queue in the real

world. A queue is a data structure in which whatever comes first will go out first, and it

follows the FIFO (First-In-First-Out) policy. Queue can also be defined as the list or

collection in which the insertion is done from one end known as the rear end or

the tail of the queue, whereas the deletion is done from another end known as

the front end or the head of the queue.

The real-world example of a queue is the ticket queue outside a cinema hall, where

the person who enters first in the queue gets the ticket first, and the last person

enters in the queue gets the ticket at last. Similar approach is followed in the queue in

data structure.

Now, let's move towards the types of queue.

Types of Queue

There are four different types of queue that are listed as follows -

o Simple Queue or Linear Queue

o Circular Queue

o Priority Queue

o Double Ended Queue (or Deque)

Operations performed on queue

The fundamental operations that can be performed on queue are listed as follows -

o Enqueue: The Enqueue operation is used to insert the element at the rear end

of the queue. It returns void.

o Dequeue: It performs the deletion from the front-end of the queue. It also

returns the element which has been removed from the front-end. It returns an

integer value.

o Peek: This is the third operation that returns the element, which is pointed by

the front pointer in the queue but does not delete it.

o Queue overflow (isfull): It shows the overflow condition when the queue is

completely full.

o Queue underflow (isempty): It shows the underflow condition when the

Queue is empty, i.e., no elements are in the Queue.

Applications of Queue:

o Queues are widely used as waiting lists for a single shared resource like printer,

disk, CPU.

o Queues are used in asynchronous transfer of data (where data is not being

transferred at the same rate between two processes) for eg. pipes, file IO,

sockets.

o Queues are used as buffers in most of the applications like MP3 media player,

CD player, etc.

o Queue are used to maintain the play list in media players in order to add and

remove the songs from the play-list.

o Queues are used in operating systems for handling interrupts.

2. Define Recursion. Write a C program to implement Tower of Hanoi problem using recursion

and trace the output for 3 disks.

Definition: The process in which a function calls itself directly or indirectly is

called recursion and the corresponding function is called a recursive function.

Using a recursive algorithm, certain problems can be solved quite easily.

Examples of such problems are Towers of Hanoi

(TOH), Inorder/Preorder/Postorder Tree Traversals, DFS of Graph, etc.

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

3. Design, develop, and execute a program in C to simulate the working of a linear queue of
integers using an array. Provide the following operations: a. Insert b. Delete c. Display

Simple Queue or Linear Queue

In Linear Queue, an insertion takes place from one end while the deletion occurs from

another end. The end at which the insertion takes place is known as the rear end, and

the end at which the deletion takes place is known as front end. It strictly follows the

FIFO rule.

Queue Implementation using array (Linear Queue)

#include <stdio.h>

#include<stdlib.h>

#define MAX 6
void enqueue();

void dequeue();

void display();
int queue[MAX], rear=-1, front=-1, item;

void main()
{

 int ch;

 while(1)
 {

printf("\n\n1. Insert\n2. Delete\n3. Display\n4. Exit\n");

printf("\nEnter your choice:");
scanf("%d", &ch);

switch(ch)

{
case 1:

enqueue();

break;
case 2:

dequeue();

break;
case 3:

display();

break;
case 4:

exit(0);

default:
printf("\n\nInvalid entry. Please try again...\n");

}
 }

}

void enqueue()
{

 if(rear == MAX-1)
 printf("\nQueue is full.");

 else

 {
 printf("\n\nEnter ITEM:");

 scanf("%d", &item);

 if (rear == -1 && front == -1)
 {

 rear = 0;

 front = 0;
 }

 else

 rear++;
 queue[rear] = item;

 printf("\n\nItem inserted: %d", item);

 }
}

void dequeue()

{
 if(front == -1)

 printf("\n\nQueue is empty.");

 else
 {

 item = queue[front];

 if (front == rear)
 {

 front = -1;
 rear = -1;

 }

 else
 front++;

 printf("\n\nItem deleted: %d", item);

 }
}

void display()

{
 int i;

 if(front == -1)
 printf("\n\nQueue is empty.");

 else

 {

 printf("\n\n");

 for(i=front; i<=rear; i++)
 printf("%d", queue[i]);

 }

}

Drawbacks of Linear Queue:

The major drawback of using a linear Queue is that insertion is done only from the

rear end. If the first three elements are deleted from the Queue, we cannot insert

more elements even though the space is available in a Linear Queue. In this case, the

linear Queue shows the overflow condition as the rear is pointing to the last element

of the Queue.

Time consuming: linear time to be spent in shifting the

elements to the beginning of the queue.

• Signaling queue full: even if the queue is having vacant

position.

4. What is Circular Queue? Write a program to insert and delete an item from circular Queue.

Circular Queue:

Why was the concept of the circular queue introduced?

There was one limitation in the array implementation of Queue. If the rear reaches to

the end position of the Queue then there might be possibility that some vacant

spaces are left in the beginning which cannot be utilized. So, to overcome such

limitations, the concept of the circular queue was introduced.

https://www.javatpoint.com/data-structure-queue

As we can see in the above image, the rear is at the last position of the Queue and

front is pointing somewhere rather than the 0th position. In the above array, there are

only two elements and other three positions are empty. The rear is at the last position

of the Queue; if we try to insert the element then it will show that there are no empty

spaces in the Queue. There is one solution to avoid such wastage of memory space by

shifting both the elements at the left and adjust the front and rear end accordingly. It

is not a practically good approach because shifting all the elements will consume lots

of time. The efficient approach to avoid the wastage of the memory is to use the

circular queue data structure.

What is a Circular Queue?

A circular queue is similar to a linear queue as it is also based on the FIFO (First In First

Out) principle except that the last position is connected to the first position in a

circular queue that forms a circle. It is also known as a Ring Buffer.

Applications of Circular Queue

The circular Queue can be used in the following scenarios:

o Memory management: The circular queue provides memory management. As

we have already seen that in linear queue, the memory is not managed very

efficiently. But in case of a circular queue, the memory is managed efficiently by

placing the elements in a location which is unused.

o CPU Scheduling: The operating system also uses the circular queue to insert

the processes and then execute them.

o Traffic system: In a computer-control traffic system, traffic light is one of the

best examples of the circular queue. Each light of traffic light gets ON one by

one after every jinterval of time. Like red light gets ON for one minute then

yellow light for one minute and then green light. After green light, the red light

gets ON.

Operations on Circular Queue:
Implementation of Circular Queue using Array

#include <stdio.h>

#include<stdlib.h>

#define MAX 6

void enqueue();

void dequeue();

void display();

int queue[MAX], rear=-1, front=-1, item;

void main()

{

 int ch;

 while(1)

 {

printf("\n\n1. Insert\n2. Delete\n3. Display\n4. Exit\n");

printf("\nEnter your choice:");

scanf("%d", &ch);

switch(ch)

{

case 1:

enqueue();

break;

case 2:

dequeue();

break;

case 3:

display();

break;

case 4:

exit(0);

default:

printf("\n\nInvalid entry. Please try again...\n");

}

 }

}

void enqueue()

{

 if((rear+1)%MAX == front)

 printf("\nQueue is full.");

 else

 {

 printf("\n\nEnter ITEM:");

 scanf("%d", &item);

 if (rear == -1 && front == -1)

 {

 rear = 0;

 front = 0;

 }

 else

 rear=(rear+1)%MAX;

 queue[rear] = item;

 printf("\n\nItem inserted: %d", item);

 }

}

void dequeue()

{

 if(front == -1)

 printf("\n\nQueue is empty.");

 else

 {

 item = queue[front];

 if (front == rear)

 {

 front = -1;

 rear = -1;

 }

 else

 front=(front+1)%MAX;

 printf("\n\nItem deleted: %d", item);

 }

}

void display()

{

 int i=front;

 if(front == -1 && rear==-1)

 printf("\n\nQueue is empty.");

 else

 {

 printf("\n\n queue is ");

 while(i!=rear)

 {

 printf("%d", queue[i]);

 i=(i+1)%MAX;

 }

 printf("%d",queue[rear]);

}

}

5. Write a C program to simulate the working of a singly linked list providing the following
operations: a. Insert begin/ insert last b. Delete from the beginning/end c. Delete a given
element (random) d. Display

#include<stdio.h>

#include<stdlib.h>

struct node

{ int

data;

struct node *next;

};

struct node *head;

void beginsert ();

void lastinsert ();

void begin_delete();

void last_delete();

void

random_delete();

void display(); int

main ()

{ int

choice;

while(1)

 {

printf("\n\n*********Main Menu*********\n");

printf("\nChoose one option from the following list ...\n");

printf("\n===\n");

printf("\n1.Insert in begining\n2.Insert at last\n3.Delete from Beginning\n4.Delete from

last\n5.Delete node after specifie location\n6.Show\n7.Exit\n");

printf("\nEnter your choice?\n");

scanf("\n%d",&choice);

switch(choice)

 {

case 1:

beginsert();

break;

case 2:

lastinsert(); break; case 3:

begin_delete(); break; case 4:

last_delete(); break; case 5:

random_delete(); break;

case 6: display(); break;

case 7: exit(0); break; default:

printf("Please enter valid

choice..");

 }

 } } void beginsert() { struct node *ptr; int

item; ptr = (struct node *) malloc(sizeof(struct

node *));

if(ptr == NULL)

 {

printf("\nOVERFLOW");

 }

else

 {

printf("\nEnter

value\n");

scanf("%d",&item);

ptr->data = item; ptr-

>next = head; head =

ptr; printf("\nNode

inserted");

 }

} void lastinsert() { struct node

*ptr,*temp; int item; ptr = (struct

node*)malloc(sizeof(struct node));

if(ptr == NULL)

 {

printf("\nOVERFLOW");

 }

else

 {

printf("\nEnter value?\n");

scanf("%d",&item);

ptr->data = item;

if(head == NULL)

 {

ptr -> next = NULL;

head = ptr;

printf("\nNode

inserted");

 }

else

 {

temp = head; while (temp ->

next != NULL)

 {

temp = temp -> next;

 }

temp->next = ptr; ptr-

>next = NULL;

printf("\nNode inserted");

 }

 } }

void begin_delete()

{

struct node *ptr;

if(head == NULL)

 {

printf("\nList is empty\n");

 }

else

 {

ptr = head; head = ptr->next; free(ptr);

printf("\nNode deleted from the begining

...\n");

 } } void

last_delete() {

struct node

*ptr,*ptr1;

if(head == NULL)

 {

printf("\nlist is empty");

 }

else if(head -> next == NULL)

 {

head = NULL; free(head);

printf("\nOnly node of the list deleted

...\n");

 }

else

 {

ptr = head;

while(ptr->next != NULL)

 {

ptr1 = ptr;

ptr = ptr ->next;

 }

 ptr1->next = NULL;

free(ptr); printf("\nDeleted Node from

the last ...\n");

 }

}

void random_delete()

{

struct node *ptr,*ptr1; int loc,i; printf("\n Enter the location of the node after

which you want to perform deletion \n"); scanf("%d",&loc); ptr=head;

for(i=0;i<loc;i++)

 { ptr1

= ptr; ptr =

ptr->next;

if(ptr == NULL)

 {

printf("\nCan't delete");

return;

 }

 }

 ptr1 ->next = ptr ->next;

free(ptr); printf("\nDeleted node

%d ",loc+1);

}

void display()

{ struct node

*ptr; ptr =

head; if(ptr ==

NULL)

 {

printf("Nothing to print");

 }

else

 {

printf("\nprinting values\n");

while (ptr!=NULL)

 {

printf("\n%d",ptr->data);

ptr = ptr -> next;

 }

 }

}

6. What is Double ended Queues. Explain its type and operations performed on Double ended

Queue.

 Deque(or double-ended queue)

In this article, we will discuss the double-ended queue or deque. We should first see a

brief description of the queue.

What is a queue?

A queue is a data structure in which whatever comes first will go out first, and it

follows the FIFO (First-In-First-Out) policy. Insertion in the queue is done from one

end known as the rear end or the tail, whereas the deletion is done from another end

known as the front end or the head of the queue.

The real-world example of a queue is the ticket queue outside a cinema hall, where

the person who enters first in the queue gets the ticket first, and the person enters

last in the queue gets the ticket at last.

What is a DEQue (or double-ended queue?)

The deque stands for Double Ended Queue. Deque is a linear data structure where the

insertion and deletion operations are performed from both ends. We can say that

deque is a generalized version of the queue.

Types of DEQue

There are two types of DEQue

o Input restricted queue

o Output restricted queue

Input restricted Queue

In input restricted queue, insertion operation can be performed at only one end, while

deletion can be performed from both ends.

Output restricted Queue

In output restricted queue, deletion operation can be performed at only one end,

while insertion can be performed from both ends.

Operations performed on deque

There are the following operations that can be applied on a deque -

o Insertion at front

o Insertion at rear

o Deletion at front

o Deletion at rear

We can also perform peek operations in the deque along with the operations listed

above. Through peek operation, we can get the deque's front and rear elements of

the deque. So, in addition to the above operations, following operations are also

supported in deque -

o Get the front item from the deque

o Get the rear item from the deque

o Check whether the deque is full or not

o Checks whether the deque is empty or not

Now, let's understand the operation performed on deque using an example.

Insertion at the front end

In this operation, the element is inserted from the front end of the queue. Before

implementing the operation, we first have to check whether the queue is full or not. If

the queue is not full, then the element can be inserted from the front end by using the

below conditions -

o If the queue is empty, both rear and front are initialized with 0. Now, both will

point to the first element.

o Otherwise, check the position of the front if the front is less than 1 (front < 1),

then reinitialize it by front = n - 1, i.e., the last index of the array.

Insertion at the rear end

In this operation, the element is inserted from the rear end of the queue. Before

implementing the operation, we first have to check again whether the queue is full or

not. If the queue is not full, then the element can be inserted from the rear end by

using the below conditions -

o If the queue is empty, both rear and front are initialized with 0. Now, both will

point to the first element.

o Otherwise, increment the rear by 1. If the rear is at last index (or size - 1), then

instead of increasing it by 1, we have to make it equal to 0.

Deletion at the front end

In this operation, the element is deleted from the front end of the queue. Before

implementing the operation, we first have to check whether the queue is empty or

not.

If the queue is empty, i.e., front = -1, it is the underflow condition, and we cannot

perform the deletion. If the queue is not full, then the element can be inserted from

the front end by using the below conditions

If the deque has only one element, set rear = -1 and front = -1.

Else if front is at end (that means front = size - 1), set front = 0.

Else increment the front by 1, (i.e., front = front + 1).

Deletion at the rear end

In this operation, the element is deleted from the rear end of the queue. Before

implementing the operation, we first have to check whether the queue is empty or

not.

If the queue is empty, i.e., front = -1, it is the underflow condition, and we cannot

perform the deletion.

If the deque has only one element, set rear = -1 and front = -1.

If rear = 0 (rear is at front), then set rear = n - 1.

Else, decrement the rear by 1 (or, rear = rear -1).

Check empty

This operation is performed to check whether the deque is empty or not. If front = -1,

it means that the deque is empty.

Check full

This operation is performed to check whether the deque is full or not. If front = rear +

1, or front = 0 and rear = n - 1 it means that the deque is full.

The time complexity of all of the above operations of the deque is O(1), i.e., constant.

Applications of DEQue

o Deque can be used as both stack and queue, as it supports both operations.

o Deque can be used as a palindrome checker means that if we read the string

from both ends, the string would be the same.

7. Explain Static (stack) and Dynamic (heap) memory allocation with neat diagram and also list

the differences between static and dynamic memory allocation

Memory Allocation: Memory allocation is a process by which computer programs and

services are assigned with physical or virtual memory space. The memory allocation is done

either before or at the time of program execution. There are two types of memory

allocations:

1. Compile-time or Static Memory Allocation

2. Run-time or Dynamic Memory Allocation

Static Memory Allocation:

Static Memory is allocated for declared variables by the compiler. The address can be found

using the address of operator and can be assigned to a pointer. The memory is allocated

during compile time.

Dynamic Memory Allocation:

Memory allocation done at the time of execution (run time) is known as dynamic memory

allocation. Functions calloc() and malloc() support allocating dynamic memory. In the

Dynamic allocation of memory space is allocated by using these functions when the value is

returned by functions and assigned to pointer variables.

Memory in C – the stack, the heap, and static

 C has three different pools of memory.

– static: global variable storage, permanent for the entire run of the program.

– stack: local variable storage (automatic, continuous memory).

– heap: dynamic storage (large pool of memory, not allocated in contiguous order).

https://www.geeksforgeeks.org/difference-between-static-allocation-and-heap-allocation/
https://www.geeksforgeeks.org/what-is-dynamic-memory-allocation/
https://www.geeksforgeeks.org/address-function-c-cpp/
https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/

Static memory and Stack (Static Memory Allocation)

Static memory persists throughout the entire life of the program, and is usually used to store

things like global variables, or variables created with the static clause. For example:

int theforce;

On many systems this variable uses 4 bytes of memory. This memory can come from one of

two places. If a variable is declared outside of a function, it is considered global, meaning it is

accessible anywhere in the program. Global variables are static, and there is only one copy for

the entire program. Inside a function the variable is allocated on the stack. It is also possible to

force a variable to be static using the static clause. For example, the same variable created

inside a function using the static clause would allow it to be stored in static memory.

static int theforce;

Stack memory

The stack is used to store variables used on the inside of a function (including

the main() function). It’s a LIFO, “Last-In,-First-Out”, structure. Every time a function

declares a new variable it is “pushed” onto the stack. Then when a function finishes running,

all the variables associated with that function on the stack are deleted, and the memory

they use is freed up. This leads to the “local” scope of function variables. The stack is a special

region of memory, and automatically managed by the CPU – so you don’t have to allocate or

deallocate memory. Stack memory is divided into successive frames where each time a

function is called, it allocates itself a fresh stack frame.

Note that there is generally a limit on the size of the stack – which can vary with the operating

system (for example OSX currently has a default stack size of 8MB). If a program tries to put

too much information on the stack, stack overflow will occur. Stack overflow happens when

all the memory in the stack has been allocated, and further allocations begin overflowing into

other sections of memory. Stack overflow also occurs in situations where recursion is

incorrectly used.

A summary of the stack:

 the stack is managed by the CPU, there is no ability to modify it

 variables are allocated and freed automatically

 the stack it not limitless – most have an upper bound

 the stack grows and shrinks as variables are created and destroyed

 stack variables only exist whilst the function that created them exists

https://craftofcoding.files.wordpress.com/2015/12/stackmemory4.jpg

Heap memory (Dynamic Memory Allocation)

The heap is the diametrical opposite of the stack. The heap is a large pool of memory that can

be used dynamically – it is also known as the “free store”. This is memory that is not

automatically managed – you have to explicitly allocate (using functions such as malloc), and

deallocate (e.g. free) the memory. Failure to free the memory when you are finished with it

will result in what is known as a memory leak – memory that is still “being used”, and not

available to other processes. Unlike the stack, there are generally no restrictions on the size of

the heap (or the variables it creates), other than the physical size of memory in the machine.

Variables created on the heap are accessible anywhere in the program.

Oh, and heap memory requires you to use pointers.

A summary of the heap:

 the heap is managed by the programmer, the ability to modify it is somewhat boundless

 in C, variables are allocated and freed using functions like malloc() and free()

 the heap is large, and is usually limited by the physical memory available

 the heap requires pointers to access it

An example of memory use

Consider the following example of a program containing all three forms of memory:

#include <stdio.h>

#include <stdlib.h>

int x;

int main(void)

{

 int y;

 char *str;

 y = 4;

 printf("stack memory: %d\n", y);

 str = malloc(100*sizeof(char));

 str[0] = 'm';

 printf("heap memory: %c\n", str[0]);

 free(str);

 return 0;

}

The variable x is static storage, because of its global nature. Both y and str are dynamic stack

storage which is deallocated when the program ends. The function malloc() is used to allocate

100 pieces of of dynamic heap storage, each the size of char, to str. Conversely, the

function free(), deallocates the memory associated with str.

Tabular Difference between Static and Dynamic Memory Allocation in C:

S.No Static Memory Allocation Dynamic Memory Allocation

1

In the static memory allocation, variables

get allocated permanently, till the program

executes or function call finishes.

In the Dynamic memory allocation, variables get

allocated only if your program unit gets active.

2
Static Memory Allocation is done before
program execution.

Dynamic Memory Allocation is done during program
execution.

3
It uses stack for managing the static

allocation of memory

It uses heap for managing the dynamic allocation of

memory

4 It is less efficient It is more efficient

5
In Static Memory Allocation, there is no

memory re-usability

In Dynamic Memory Allocation, there is memory re-

usability and memory can be freed when not required

6

In static memory allocation, once the

memory is allocated, the memory size can

not change.

In dynamic memory allocation, when memory is

allocated the memory size can be changed.

7
In this memory allocation scheme, we

cannot reuse the unused memory.

This allows reusing the memory. The user can allocate

more memory when required. Also, the user can release

https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/heap-data-structure/
https://craftofcoding.files.wordpress.com/2015/12/stackmemory31.jpg

the memory when the user needs it.

8

In this memory allocation scheme,

execution is faster than dynamic memory

allocation.

In this memory allocation scheme, execution is slower

than static memory allocation.

9
In this memory is allocated at compile

time.
In this memory is allocated at run time.

10
In this allocated memory remains from

start to end of the program.

In this allocated memory can be released at any time

during the program.

11
Example: This static memory allocation is

generally used for array.

Example: This dynamic memory allocation is generally

used for linked list.

12 Example: inti; float f;
p = malloc(sizeof(int));

8. Explain different types of linked list. What are the advantages of linked list over arrays?

 Types of Linked list

Linked list is classified into the following types –

o Singly-linked list - Singly linked list can be defined as the collection of an

ordered set of elements. A node in the singly linked list consists of two parts:

data part and link part. Data part of the node stores actual information that is

to be represented by the node, while the link part of the node stores the

address of its immediate successor.

o Doubly linked list - Doubly linked list is a complex type of linked list in which

a node contains a pointer to the previous as well as the next node in the

sequence. Therefore, in a doubly-linked list, a node consists of three parts:

node data, pointer to the next node in sequence (next pointer), and pointer to

the previous node (previous pointer).

o Circular singly linked list - In a circular singly linked list, the last node of the

list contains a pointer to the first node of the list. We can have circular singly

linked list as well as circular doubly linked list.

https://www.geeksforgeeks.org/introduction-to-arrays/
https://www.geeksforgeeks.org/data-structures/linked-list/

o Circular doubly linked list - Circular doubly linked list is a more complex type

of data structure in which a node contains pointers to its previous node as well

as the next node. Circular doubly linked list doesn't contain NULL in any of the

nodes. The last node of the list contains the address of the first node of the list.

The first node of the list also contains the address of the last node in its

previous pointer.

Advantages of Linked list

The advantages of using the Linked list are given as follows -

o Dynamic data structure - The size of the linked list may vary according to the

requirements. Linked list does not have a fixed size.

o Insertion and deletion - Unlike arrays, insertion, and deletion in linked list is

easier. Array elements are stored in the consecutive location, whereas the

elements in the linked list are stored at a random location. To insert or delete

an element in an array, we have to shift the elements for creating the space.

Whereas, in linked list, instead of shifting, we just have to update the address

of the pointer of the node.

o Memory efficient - The size of a linked list can grow or shrink according to the

requirements, so memory consumption in linked list is efficient.

o Implementation - We can implement both stacks and queues using linked list.

9. Write a program to implement stack operations push(), pop() and Display() using singly linked
list.

Linked list Implementation of stack:

#include <stdio.h>

#include <stdlib.h>

void push(); void

pop(); void

display(); struct

node

{ int

val;

struct node *next;

};

struct node *head;

void main ()

{

int choice=0;

printf("\n*********Stack operations using linked list*********\n"); printf("\n------------------

----------------------------\n");

while(choice != 4)

 {

printf("\n\nChose one from the below options...\n");

printf("\n1.Push\n2.Pop\n3.Show\n4.Exit");

printf("\n Enter your choice \n"); scanf("%d",&choice);

switch(choice)

 {

case 1:

 {

push(); break;

 } case

2:

 {

pop(); break;

 } case

3:

 {

display(); break;

 } case

4:

 {

printf("Exiting...."); break;

 } default:

 {

printf("Please Enter valid choice ");

 }

 };

} } void push () { int val; struct node *ptr = (struct

node*)malloc(sizeof(struct node));

if(ptr == NULL)

 {

printf("not able to push the element");

 }

else

 {

printf("Enter the value");

scanf("%d",&val); if(head==NULL)

 {

ptr->val = val; ptr ->

next = NULL;

head=ptr;

 }

else

 {

ptr->val = val; ptr->next

= head; head=ptr;

 }

printf("Item pushed");

 } }

void pop() { int

item; struct node

*ptr; if (head ==

NULL)

 {

printf("Underflow");

 }

else

 {

item = head->val; ptr

= head;

head = head->next;

free(ptr); printf("Item

popped");

 } } void

display() {

int i; struct node

*ptr; ptr=head;

if(ptr == NULL)

 {

printf("Stack is empty\n");

 }

else

 {

printf("Printing Stack elements \n");

while(ptr!=NULL)

 {

printf("%d\n",ptr->val); ptr

= ptr->next;

 }

 }

}

10. Explain the different functions used in C language for memory allocation and management
with example program.

The C programming language provides several functions for memory allocation and

management. These functions can be found in the <stdlib.h> header file.

Sr.No. Function & Description

1
void *calloc(int num, int size);

This function allocates an array of num elements each of which size in bytes will be size.

2
void free(void *address);

This function releases a block of memory block specified by address.

3
void *malloc(size_t size);

This function allocates an array of num bytes and leave them uninitialized.

4
void *realloc(void *address, int newsize);

This function re-allocates memory extending it upto newsize.

Allocating Memory Dynamically

While programming, if you are aware of the size of an array, then it is easy and you can

define it as an array. For example, to store a name of any person, it can go up to a maximum

of 100 characters, so you can define something as follows −

char name[100];

But now let us consider a situation where you have no idea about the length of the text you

need to store, for example, you want to store a detailed description about a topic. Here we

need to define a pointer to character without defining how much memory is required and

later, based on requirement, we can allocate memory as shown in the below example −

#include<stdio.h>
#include<stdlib.h>#i
nclude<string.h>int
main(){ char
name[100];
char*description;
strcpy(name,"Raj");
/* allocate memory dynamically */ description=malloc(200*sizeof(char));

if(description == NULL){
fprintf(stderr,"Error - unable to allocate required memory\n");
}else{
strcpy(description,"Raj welcome to CMRIT");
}

printf("Name = %s\n", name);
printf("Description: %s\n", description); }

When the above code is compiled and executed, it produces the following result.

Name = Raj

Description: Raj Welcome to CMRIT

Same program can be written using calloc(); only thing is you need to replace malloc with

calloc as follows −

calloc(200,sizeof(char));

So you have complete control and you can pass any size value while allocating memory,

unlike arrays where once the size defined, you cannot change it.

Resizing and Releasing Memory

When your program comes out, operating system automatically release all the memory

allocated by your program but as a good practice when you are not in need of memory

anymore then you should release that memory by calling the function free().

Alternatively, you can increase or decrease the size of an allocated memory block by calling

the function realloc().

	Types of Queue
	Operations performed on queue
	Simple Queue or Linear Queue

	Queue Implementation using array (Linear Queue)
	#include <stdio.h>
	#include<stdlib.h>
	#define MAX 6
	void enqueue();
	void dequeue();
	void display();
	int queue[MAX], rear=-1, front=-1, item;
	void main()
	{
	int ch;
	while(1)
	{ (1)
	printf("\n\n1. Insert\n2. Delete\n3. Display\n4. Exit\n");
	printf("\nEnter your choice:");
	scanf("%d", &ch);
	switch(ch)
	{ (2)
	case 1:
	enqueue();
	break;
	case 2:
	dequeue();
	break; (1)
	case 3:
	display();
	break; (2)
	case 4:
	exit(0);
	default:
	printf("\n\nInvalid entry. Please try again...\n");
	}
	} (1)
	} (2)
	void enqueue()
	{ (3)
	if(rear == MAX-1)
	printf("\nQueue is full.");
	else
	{ (4)
	printf("\n\nEnter ITEM:");
	scanf("%d", &item);
	if (rear == -1 && front == -1)
	{ (5)
	rear = 0;
	front = 0;
	} (3)
	else (1)
	rear++;
	queue[rear] = item;
	printf("\n\nItem inserted: %d", item);
	} (4)
	} (5)
	void dequeue()
	{ (6)
	if(front == -1)
	printf("\n\nQueue is empty.");
	else (2)
	{ (7)
	item = queue[front];
	if (front == rear)
	{ (8)
	front = -1;
	rear = -1;
	} (6)
	else (3)
	front++;
	printf("\n\nItem deleted: %d", item);
	} (7)
	} (8)
	void display()
	{ (9)
	int i;
	if(front == -1) (1)
	printf("\n\nQueue is empty."); (1)
	else (4)
	{ (10)
	printf("\n\n");
	for(i=front; i<=rear; i++)
	printf("%d", queue[i]);
	} (9)
	} (10)
	Drawbacks of Linear Queue:
	Time consuming: linear time to be spent in shifting the elements to the beginning of the queue.
	• Signaling queue full: even if the queue is having vacant position.
	Circular Queue:
	Why was the concept of the circular queue introduced?
	What is a Circular Queue?
	Applications of Circular Queue
	Operations on Circular Queue:
	Deque(or double-ended queue)
	What is a queue?

	What is a DEQue (or double-ended queue?)
	Types of DEQue
	There are two types of DEQue
	Operations performed on deque

	Applications of DEQue

	Memory in C – the stack, the heap, and static
	Static memory and Stack (Static Memory Allocation)
	Stack memory
	Heap memory (Dynamic Memory Allocation)
	An example of memory use
	Types of Linked list
	Linked list is classified into the following types –
	Advantages of Linked list

