
Page 1 of 6

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test II – April 2023

Sub: Design and Analysis of Algorithms Sub Code: 22MCA15

Date: 26.04.23 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS
OBE

CO RBT

1 Implement fractional Knapsack problem for the following data and write

the algorithm to identify the items that should be kept in the sack:

Weights: {1,3,4,5}, Profits: {1,4,5,7}, The maximum weight capacity is 7

kg

OR

[4+6]

CO1 L4

2 Consider the five-symbol alphabet {A, B, C, D, _} with the following

occurrence frequencies in a text made up of these symbols:

Create a Huffman tree and construct the codes for the symbols. Then encode

ABACABAD and decode 100010111001010 using the code of question.

[6+2+2]

CO1 L4

3
PART II

Write the Traveling Salesman Algorithm and explain using the following

graph.

OR

[4+6]

CO1 L4

4

Write Floyd’s algorithm and explain with the following graph:

{ {0, 5, INF, 10},

 {INF, 0, 3, INF},

 {INF, INF, 0, 1},

 {INF, INF, INF, 0} }

Mention the time complexity with justification.

[3+5+2]

CO1,

CO2

L3,

L4

5
PART III

Find the optimal Binary Search Tree from the given keys and their

frequencies:

Keys 10 20 30 40

Frequencies 4 2 6 3

OR

[10] CO1 L4

Page 2 of 6

6 Implement Bellman Ford algorithm on the graph below and discuss the drawback

of the algorithm:

[8+2]

CO1 L4

7
PART IV

Write the algorithm for job sequencing with deadline and implement the same on

the data given below:

Job J1 J2 J3 J4 J5

Deadline 2 2 1 3 4

Profit 20 60 40 100 80

OR

[4+6]

CO1 L4

8

Differentiate between Greedy approach and Dynamic Programming in algorithms.

Apply Coin Change problem (greedy method) on an input sum of Rs.5493 and

use denominations of 1, 2, 5, 10, 20, 50, 100, 200, 500, 2000. Mention the time

complexity with justification.

[3+5+2]

CO1,

CO2
L3,

L4

9
PART V

Write Dijkstra’s algorithm and apply it on the graph below.

OR

[4+6]

CO1 L4

10 Apply Multistage Graph algorithm on

graph[N][N] =
 {{INF, 1, 2, 5, INF, INF, INF, INF},
 {INF, INF, INF, INF, 4, 11, INF, INF},
 {INF, INF, INF, INF, 9, 5, 16, INF},
 {INF, INF, INF, INF, INF, INF, 2, INF},
 {INF, INF, INF, INF, INF, INF, INF, 18},
 {INF, INF, INF, INF, INF, INF, INF, 13},
 {INF, INF, INF, INF, INF, INF, INF, 2},
 {INF, INF, INF, INF, INF, INF, INF, INF}}

[10] CO1 L4

Page 3 of 6

DESIGN AND ANALYSIS OF ALGORITHMS

IAT-2[26/04/2023]
Q1. Fraction_Knapsack(W[],P[],B,n)

 1. Create an empty array X[] of size n

 2. Repeat step 3 for n times for i in 0 to n-1.

 3. X[i] <- P[i]/W[i]

 4. Sort P[],W[] and X[] in descending order w.r.t the values in X[], set p,i to 0.

 5. Repeat step 6 to 10 as long as B>0 and i<n

 6. If W[i]<=B then go to 7 else go to 9

 7. p<-p+P[i]

 8. B<-B-W[i]

 9. p <- p+(B/W[i])*P[i], go to 11

 10. i <- i+1

 11. Return p

Weight(W[]) 1 3 4 5

Profit(P[]) 1 4 5 7

X[](P[]/W[]) 1 1.33 1.25 1.4

After sorting

Weight(W[]) 5 3 4 1

Profit(P[]) 7 4 5 1

X[](P[]/W[]) 1.4 1.33 1.25 1

 B= 7, n=4

Profit = 7 + (0.67*4) = 9.67

Q2.

 0 1 Encoding: ABACABAD ->

0100011101000110

 A: 0 Decoding: 100010111001010 ->

BA_DA_A

 B: 100 0 1

 C: 111

 D: 110 0 1 0 1

 _: 101

Q3.

Q4. Floyd’s Algorithms

 Initialize the solution matrix same as the input graph matrix as a first step.

 Then update the solution matrix by considering all vertices as an intermediate vertex.

 The idea is to one by one pick all vertices and updates all shortest paths which include the picked vertex as an intermediate

vertex in the shortest path.

 When we pick vertex number k as an intermediate vertex, we already have considered vertices {0, 1, 2, .. k -1} as

intermediate vertices.

X4

X

3

A

X

1

X2

B

--

D C

Page 4 of 6

 For every pair (i, j) of the source and destination vertices respectively, there are two possible cases.

 k is not an intermediate vertex in shortest path from i to j. We keep the value of dist[i][j] as it is.

 k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] as d ist[i][k] + dist[k][j]

if dist[i][j] > dist[i][k] + dist[k][j]

Time Complexity: If there are V vertices, then to find the shortest distance from one vertex to all the remaining vertices (V-1)

will take time in the order of O(V
2
). This is basically the worst case for Dijkstra’s. Floyd Warshall is the Dijkstra’s applied to all

the vertices so the time taken will be of the order O(V . V
2
) which is O(V

3
).

Q5.

Q6.

Q7. Job Scheduling(P[],D[])

ITERATION A B C D E

 0 0 INF INF INF INF

 1

0 -1 INF INF INF

0 -1 4 INF INF

0 -1 2 INF INF

 2

0 -1 2 INF 1

0 -1 2 1 1

0 -1 2 -2 1

Page 5 of 6

Sort all jobs in decreasing order of P[].

Iterate on jobs in decreasing order of profit. For each job k, do the following :

 Find a time slot i, such that slot is empty and i < D[k] and i is greatest.

Put the job in this slot and mark this slot filled.

 If no such i exists, then ignore the job.

Slot 1 2 3 4

Job Number J3 J2 J4 J5

Deadline 1 2 3 4

Profit 40 60 100 80

Total Profit = 280

8.

Feature
Greedy method Dynamic programming

Feasibility

In a greedy Algorithm, we make whatever

choice seems best at the moment in the hope

that it will lead to global optimal solution.

In Dynamic Programming we make decision at each

step considering current problem and solution to

previously solved sub problem to calculate optimal

solution .

Optimality
In Greedy Method, sometimes there is no such

guarantee of getting Optimal Solution.

It is guaranteed that Dynamic Programming will

generate an optimal solution as it generally

considers all possible cases and then choose the best.

Recursion

A greedy method follows the problem solving

heuristic of making the locally optimal choice at

each stage.

A Dynamic programming is an algorithmic

technique which is usually based on a recurrent

formula that uses some previously calculated states.

Memoization

It is more efficient in terms of memory as it

never look back or revise previous choices

It requires Dynamic Programming table for

Memoization and it increases it’s memory

complexity.

 Time

 complexity

Greedy methods are generally faster. For

example, Dijkstra’s shortest path algorithm

takes O(ELogV + VLogV) time.

Dynamic Programming is generally slower. For

example, Bellman Ford algorithm takes O(VE) time.

Fashion

The greedy method computes its solution by

making its choices in a serial forward fashion,

never looking back or revising previous choices.

Dynamic programming computes its solution bottom

up or top down by synthesizing them from smaller

optimal sub solutions.

Example
Fractional knapsack .

0/1 knapsack problem

Amount = 5493

Denomination Count Value

2000 2 4000

500 2 1000

200 2 400

100 0 0

50 1 50

20 2 40

10 0 0

5 0 0

2 1 2

1 1 1

Time Complexity: First to sort the denominations in descending order it shall take O(nlogn), where n is the number of

denominations, in this problem, 10. Further process can take at most O(n). Thus finally it is O(nlogn).

9. Dijkstra’s()

 Create a set sptSet (shortest path tree set) that keeps track of vertices included in the shortest path tree , i.e., whose

minimum distance from the source is calculated and finalized. Initially, this set is empty.

https://www.geeksforgeeks.org/greedy-algorithms/
https://www.geeksforgeeks.org/dynamic-programming/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/bellman-ford-algorithm-simple-implementation/

Page 6 of 6

 Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. Assign the

distance value as 0 for the source vertex so that it is picked first.

 While sptSet doesn’t include all vertices

 Pick a vertex u that is not there in sptSet and has a minimum distance value.

 Include u to sptSet.

 Then update the distance value of all adjacent vertices of u.

 To update the distance values, iterate through all adjacent vertices.

 For every adjacent vertex v, if the sum of the distance value of u (from source) and weight of edge u -

v, is less than the distance value of v, then update the distance value of v.

If we consider the Vertex A as the source, then

Vertex Distance from the Source

A 0

B 3

C 7

D 5

E 9

10.

