

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test – II

Sub: Advanced Java Programming Code: 20MCA33

Date: 7/2/23 Duration:
90

mins
Max Marks: 50 Sem: III Branch: MCA

Answer Any One FULL Question from each part.

 Marks
OBE

CO RBT

Part – I

1 Explain the different type of JDBC drivers 10 CO4 L2

2 Write a java JSP program to accept customer information through a

HTML. Also create Java bean class, populate the bean and display

the same information through JSP.

10 CO3 L4

Part – II

3 With an example program describe the various steps involved in

connecting a java application with database.

10 CO5 L3

4.a. How is JAR files created and used? Explain with different switches

how to work with JAR files?

10 CO3 L2

4.b. Explain Scrollable Result Set with a code snippet 5 CO4 L2

5 Develop a program to insert following data into customer table in database.

Using prepared Statement object. Table consists of cust_id , int(5), cust_name

varchar(20), city varchar(20)

10 CO4 L4

6 Explain the following page directive attributes along with example program.

a)import

b)error page and isErrorPage

c)contentType

d)buffer and autoFlush

10 CO3 L2

Part – IV

7

Write a JSP Program which uses jsp:include and jsp:forward action to display

a Webpage.

10 CO6 L4

8 List and explain the Built-in annotations of JAVA 10 CO5 L2

Part – V

 9 Write the short note about the following

i.Prepared statement

ii.Batch Update

10 CO4 L2

 10 Discuss the advanced JDBC data types 10 CO4 L2

1. Explain the different type of JDBC drivers.

Type 1: JDBC-to-ODBC Driver

 Microsoft created ODBC (Open Database Connection), which is the basis from which

Sun created JDBC. Both have similar driver specifications and an API.

 The JDBC-to-ODBC driver, also called the JDBC/ODBC Bridge, is used to translate

DBMS calls between the JDBC specification and the ODBC specification.

 MS Access and SQL Server contains ODBC driver written in C language using pointers,

but java does not support the mechanism to handle pointers.

 So JDBC-ODBC Driver is created as a bridge between the two so that JDBC-ODBC

bridge driver translates the JDBC API to the ODBC API.

Drawbacks of Type-I Driver:

o ODBC binary code must be loaded on each client.

o Transaction overhead between JDBC and ODBC.

o It doesn‟t support all features of Java.

o It works only under Microsoft, SUN operating systems.

Type 2: Java/Native Code Driver or Native-API Partly Java Driver

 It converts JDBC calls into calls on client API for DBMS.

 The driver directly communicates with database servers and therefore some database

client software must be loaded on each client machine and limiting its usefulness for

internet

 The Java/Native Code driver uses Java classes to generate platform- specific code that is

code only understood by a specific DBMS.

Ex: Driver for DB2, Informix, Intersoly, Oracle Driver, WebLogic drivers

Drawbacks of Type-I Driver:

o Some database client software must be loaded on each client machine

o Loss of some portability of code.

o Limited functionality

o The API classes for the Java/Native Code driver probably won‟t work with

another manufacturer‟s DBMS.

Type 3: Net-Protocol All-Java Driver

 It is completely implemented in java, hence it is called pure java driver. It translates the

JDBC calls into vendor‟s specific protocol which is translated into DBMS protocol by a

middleware server

 Also referred to as the Java Protocol, most commonly used JDBC driver.

 The Type 3 JDBC driver converts SQL queries into JDBC- formatted statements, in-turn

they are translated into the format required by the DBMS.

Ex: Symantec DB

Drawbacks:

 It does not support all network protocols.

 Every time the net driver is based on other network protocols.

Type 4: Native-Protocol All-Java Driver or Pure Java Driver

 Type 4 JDBC driver is also known as the Type 4 database protocol.

 The driver is similar to Type 3 JDBC driver except SQL queries are translated into the

format required by the DBMS.

 SQL queries do not need to be converted to JDBC-formatted systems.

 This is the fastest way to communicated SQL queries to the DBMS.

 Here the driver uses network protocol this protocol is already built-into the database

engine; here the driver talks directly to the database using java sockets. This driver is

better than all other drivers, because this driver supports all network protocols.

 Use Java networking libraries to talk directly to database engines

Ex: Oracle, MYSQL

Only disadvantage: need to download a new driver for each database engine

2. Write a java JSP program to accept customer information through a HTML. Also create Java

bean class, populate the bean and display the same information through JSP.

student.java

package program8;

public class Cust

{

public String cname;

public String cid;

public void setcname(String name)

{

cname=name;

}

public String getcname()

{

return cname;

}

public void setcid(String no)

{

cid=no;

}

public String getcid()

{

return cid;

}

}

display.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<!-- Using the studb bean -->

<jsp:useBean id ="studb" scope = "request" class =

"program8.Cust"></jsp:useBean> Student Name : <jsp:getProperty

name="studb" property="cname"/>

Roll No. : <jsp:getProperty name="studb" property="cid"/>

</body>

</html>

first.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/loose.dtd

<title>Insert title here</title>

</head>

<body>

<!-- Create the bean studb and set the property -->

<jsp:useBean id="studb" scope="request" class="program8.Cust"></jsp:useBean>

<jsp:setProperty name="studb" property='*'/>

<jsp:forward page="display.jsp"></jsp:forward>

</body>

</html>

index.html

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Insert title here</title>

</head>

<body>

<!-- send the form data to first.jsp -->

<form action="first.jsp">

Customer Name : <input type="text" name =

"cname"> Customer ID : <input type="text"

name = "cid">

<input type = "submit" value="Submit"/>

</form>

</body>

</html>

3. With an example program describe the various steps involved in connecting a java application

with database.

The following 5 steps are the basic steps involve in connecting a Java application with

Database using JDBC.

Register the Driver

Create a Connection

Create SQL Statement

Execute SQL Statement

Closing the connection

Register the Driver

Class.forName() is used to load the driver class explicitly.

Example to register with JDBC-ODBC Driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Create a Connection

getConnection() method of DriverManager class is used to create a connection.

Syntax

getConnection(String url)

getConnection(String url, String username, String password)

getConnection(String url, Properties info)

Example establish connection with Oracle Driver

Connection con = DriverManager.getConnection

("jdbc:oracle:thin:@localhost:1521:XE","username","password");

Create SQL Statement

createStatement() method is invoked on current Connection object to create a SQL

Statement.

Syntax

public Statement createStatement() throws SQLException

Example to create a SQL statement

Statement s=con.createStatement();

Execute SQL Statement

executeQuery() method of Statement interface is used to execute SQL statements.

Syntax

public ResultSet executeQuery(String query) throws SQLException

Example to execute a SQL statement

ResultSet rs=s.executeQuery("select * from user");

while(rs.next())

{

System.out.println(rs.getString(1)+" "+rs.getString(2));

}

Closing the connection

After executing SQL statement you need to close the connection and release the session.

The close() method of Connection interface is used to close the connection.

Syntax

public void close() throws SQLException

Example of closing a connection

con.close();

import java.sql.*;

class OracleCon{

public static void main(String args[]){

try{

//step1 load the driver class

Class.forName("oracle.jdbc.driver.OracleDriver");

//step2 create the connection object

Connection con=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

//step3 create the statement object

Statement stmt=con.createStatement();

//step4 execute query

ResultSet rs=stmt.executeQuery("select * from emp");

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

//step5 close the connection object

con.close();

}catch(Exception e){ System.out.println(e);}

}

}

4.a. How is JAR files created and used? Explain the different switches how to work with JAR

files?

JAR files are packaged with the ZIP file format, so you can use them for tasks such as
lossless data compression, archiving, decompression, and archive unpacking. These
tasks are among the most common uses of JAR files, and you can realize many JAR file
benefits using only these basic features.

Creating a JAR File

The basic format of the command for creating a JAR file is:

jar cf jar-file input-file(s)

The options and arguments used in this command are:

The c option indicates that you want to create a JAR file.

The f option indicates that you want the output to go to a file rather than to stdout. jar-
file is the name that you want the resulting JAR file to have. You can use any
filename for a JAR file. By convention, JAR filenames are given a .jar extension,
though this is not required. The input-file(s) argument is a space-separated list of one
or more files that you want to include in your JAR file. The input-file(s)argument can
contain the wildcard * symbol. If any of the "input-files" are directories, the contents
of those directories are added to the JAR archive recursively.

The c and f options can appear in either order, but there must not be any space
between them. This command will generate a compressed JAR file and place it in
the current directory. c - creates a new or empty archive pm the Std output

t - lists the table of contents from std output

X file – it extracts all files or just the named files
f - The argument following this option specifies a JAR file to work v
- It generates verbose output on stderr

m - It includes manifest information from a specified manifest file

0 - it indicates ‘store only’ without using ZIP compression
M - it specifies that a manifest file should not be created for the entries
u - It updates an exisiting JAR file by adding files or changing the

Manifest

To create a JAR file jar cf jar-file input-file(s)

To view the contents of a JAR file jar tf jar-file

To extract the contents of a JAR file jar xf jar-file
To extract specific files from a JAR file jar xf jar-file archived-file(s)
To run an application packaged as a JAR file

(requires the Main-class manifest header) java -jar app.jar

Benefits of JAR

• Security: You can digitally sign the contents of a JAR file.

• Decreased download time: for Applets and Java Web Start

• Compression: efficient storage

• Packaging for extensions: extend JVM (example Java3D)

• Package Sealing: enforce version consistency
o all classes defined in a package must be found in the same JAR file • Package

Versioning: hold data like like vendor and version information • Portability: the

mechanism for handling JAR files is a standard part of the Java platform's core API

4.b. Explain scrollable resultset with a code snippet.
In JDBC 2.1 API the virtual cursor can be moved backwards or positioned at a

specific

row.
 Six methods are there for Resultset object.
 They are first(), last(), previous(), absolute(), relative() and getrow().
 first() Moves the virtual cursor to the first row in the Resultset.
 last() Positions the virtual cursor at the last row in the Resultset
 previous() Moves the virtual cursor to the previous row.

 absolute() Positions the virtual cursor to a specified row by the an integer
value

passed to the method.
 relative() Moves the virtual cursor the specified number of rows contained

in the

parameter. The parameter can be positive or negative integer.
 getRow() Returns an integer that represents the number of the current row

in the
Resultset.

 To handle the scrollable ResultSet , a constant value is passed to the
Statement object

that is created using the createStatement(). Three constants.

TYPE_FORWARD_ONLY restricts the virtual cursor to downward

movement
TYPE_SCROLL_INSENSITIVE and TYPE_SCROLL_SENSITIVE (Permits

the virtual cursor to Move in any direction)

5. Develop a program to insert following data into music table in database. Using

prepared Statement object. Table consists of music_id , int(5), music_name varchar(20),

music_author varchar(20)

 package j2ee.p9;

import java.sql.*;

import java.io.*;

public class Studentdata {

public static void main(String[] args) {

Connection con;

PreparedStatement pstmt;

Statement stmt;

ResultSet rs;

 String music_name,music_author;

Integer music_id,

 try

{

Class.forName("com.mysql.jdbc.Driver"); // type1 driver

try{

con=DriverManager.getConnection("jdbc:mysql://127.0.0.1/mca","root","s
ystem"); // type1 access connection

BufferedReader br=new BufferedReader(new

InputStreamReader(System.in));

 do

 {

System.out.println("\n1. Insert.\n2. Select.5. Exit.\nEnter your

choice:");

int choice=Integer.parseInt(br.readLine());

switch(choice)

{

case 1: System.out.print("Enter music id :");

music_id =Integer.parseInt(br.readLine());

System.out.print("Enter music name :");

music_name=br.readLine();
 System.out.print("Enter music author :"); music_author=br.readLine();

 pstmt=con.prepareStatement("insert into music values(?,?,?)");

 pstmt.setInt(1,music_id);

pstmt.setString(2,music_name);

pstmt.setString(3,music_author);

pstmt.execute();

System.out.println("\nRecord Inserted

successfully.");

break;

case 2:

stmt=con.createStatement();

rs=stmt.executeQuery("select *from music ");

if(rs.next())

{

System.out.println("Music ID \t Music Name \t

Music author\n--------------------------------");

do

{

music_id=rs.getInt(1);

music_name=rs.getString(2);

music_author=rs.getString(3);

System.out.println(music_id+"\t"+music_name+”\t”+music_author);

}while(rs.next());

}

else

System.out.println("Record(s) are not

available in database.");

break;

case 3: con.close(); System.exit(0);

default: System.out.println("Invalid choice, Try

again.");

}//close of switch

}while(true);

}//close of nested try

catch(SQLException e2)

{

System.out.println(e2);

}

catch(IOException e3)

{

System.out.println(e3);

}

}//close of outer try

catch(ClassNotFoundException e1)

{

System.out.println(e1);

}

}

}

6. Explain the following page directive attributes along with example program.

a)import

b)error page and isErrorPage

c)contentType

d)buffer and autoFlush

1)import

The import attribute is used to import class,interface or all the members of a package.It is

similar to import keyword in java class or interface.

2. Example of import attribute

1. <html>

2. <body>

3.

4. <%@ page import="java.util.Date" %>

5. Today is: <%= new Date() %>

6.

7. </body>

8. </html>

2. errorPage

The errorPage attribute is used to define the error page, if exception occurs in the current

page, it will be redirected to the error page.

2. Example of errorPage attribute

1. //index.jsp

2. <html>

3. <body>

4.

5. <%@ page errorPage="myerrorpage.jsp" %>

6.

7. <%= 100/0 %>

8.

9. </body>

10. </html>

3.isErrorPage

The isErrorPage attribute is used to declare that the current page is the error page.

1. Note: The exception object can only be used in the error page.

4. Example of isErrorPage attribute

1. //myerrorpage.jsp

2. <html>

3. <body>

4.

5. <%@ page isErrorPage="true" %>

6.

7. Sorry an exception occured!

8. The exception is: <%= exception %>

9.

10. </body>

11. </html>

4.contentType

The contentType attribute defines the MIME(Multipurpose Internet Mail Extension) type of

the HTTP response.The default value is "text/html;charset=ISO-8859-1".

2. Example of contentType attribute

1. <html>

2. <body>

3.

4. <%@ page contentType=application/msword %>

5. Today is: <%= new java.util.Date() %>

6.

7. </body>

8. </html>

5. buffer

The buffer attribute sets the buffer size in kilobytes to handle output generated by the JSP

page.The default size of the buffer is 8Kb.

2. Example of buffer attribute

1. <html>

2. <body>

3.

4. <%@ page buffer="16kb" %>

5. Today is: <%= new java.util.Date() %>

6.

7. </body>

8. </html>

6.Autoflush

The autoFlush attribute controls whether the output buffer should be automatically flushed

when it is full (the default) or whether an exception should be raised when the buffer

overflows (autoFlush="false"). Use of this attribute takes one of the following two forms.

<%@ page autoflush=“false” %>

7. Write a JSP Program which uses jsp:include and jsp:forward action to display a

Webpage.

ndex.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<!-- send the form data to login.jsp and the get method is used -->

<form method="get" action="login.jsp">

UserName : <input type="text"

name ="name">
 Password

: <input type="password" name

="pass">

<input type="Submit" value ="Submit"/>

</form>

</body>

</html>

login.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<%

//Getting the input name from the html form

and storing in String ‘uname’ String uname =

request.getParameter("name");

//Getting the input pass from the html form

and storing in String ‘upass’ String upass =

request.getParameter("pass");

if(uname.equals("admin") && upass.equals("admin"))

{

http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/loose.dtd

%>

<jsp:forward page="main.jsp"></jsp:forward>

<%

}

else
{

out.println("Wrong Credentials Username and

Password"+"
"); out.println("Enter Corrects Username

and Password.. Try again" +"

");%>

 <jsp:include page="index.jsp"></jsp:include>

<%

}%>

</body>

</html>

main.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<%

// Getting the input name from the html form

and storing in String ‘un’--> String

un=request.getParameter("name");

// Getting the input pass from the html form

and storing in String ‘pw’--> String

pw=request.getParameter("pass");

%>

<h1>welcome:<%=un%></h1>

<h1>your user name is:<%=un%></h1>

<h1>your password is:<%=pw%></h1>

</body>

</html>

8. List and explain the Built-in annotations of JAVA
These four are the annotations imported from java.lang.annotation: @Retention,
@Documented, @Target,and @Inherited.

∙ @Override, @Deprecated, and @SuppressWarnings are included in java.lang.

http://www.w3.org/TR/html4/loose.dtd

1. @Retention

@Retention is designed to be used only as an annotation to another annotation.

It specifies the retention policy.

∙ A retention policy determines at what point annotation should be discarded.
∙ Java defined 3 types of retention policies through
java.lang.annotation.RetentionPolicy enumeration. It has SOURCE, CLASS
and RUNTIME.
∙ Annotation with retention policy SOURCE will be retained only with source

code, and discarded during compile time.
∙ Annotation with retention policy CLASS will be retained till compiling the

code, and discarded during runtime.

∙ Annotation with retention policy RUNTIME will be available to the JVM
through runtime.

∙ The retention policy will be specified by using java built-in annotation
@Retention, and we have to pass the retention policy type.

The default retention policy type is CLASS.
2. @Documented

The @Documented annotation is a marker interface that tells a tool that an
annotation is to be documented. It is designed to be used only as an annotation to
an annotation declaration. By default, annotation are not included in javadoc(is a
documentation generator). But if @document is used, it then will be processed
by javadoc like toolas and the annotation type information will also be included
in generated document .

3. @Target

The @Target annotation specifies the types of declarations to which an annotation
can be applied. It is designed to be used only as an annotation to another
annotation. @Target takes one argument, which must be a constant from the
ElementType enumeration. This argument specifies the types of declarations to
which the annotation can be applied. The constants are shown here along with the
type of declaration to which they correspond.

Target Constant Annotation Can Be Applied To

ANNOTATION_TYPE Another annotation

CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration
we can specify one or more of these values in a @Target annotation. To specify

multiple values, we must specify them within a braces-delimited list. For example, to
specify that an annotation applies only to fields and local variables, we can use this
@Target annotation: @Target({ ElementType.FIELD,
ElementType.LOCAL_VARIABLE }) 4. @Inherited

@Inherited is a marker annotation that can be used only on another annotation
declaration. it affects only annotations that will be used on class declarations.
@Inherited causes the annotation for a superclass to be inherited by a subclass.

Therefore, when a request for a specific annotation is made to the subclass, if that
annotation is not present in the subclass,then its superclass is checked. If that
annotation is present in the superclass, and if it is annotated with @Inherited,
then that annotation will be returned.

java.lang.annotation.Inherited

@Inherited
public @interface MyAnnotation {

}
@MyAnnotation

public class MySuperClass { ... }

public class MySubClass extends MySuperClass { ... }

In this example the class MySubClass inherits the annotation
@MyAnnotation because MySubClassinherits from
MySuperClass, and MySuperClass has a @MyAnnotation
annotation.

5. @Override

@Override is a marker annotation that can be used only on methods. A method
annotated with @Override must override a method from a superclass. If it

doesn’t, a compile-time error will result. It is used to ensure that a superclass
method is actually overridden, and not simply overloaded.

6. @Deprecated

@Deprecated is a marker annotation. It indicates that a declaration is obsolete
and has been replaced by a newer form. This annotation is used to mark a class,

method or field as deprecated, meaning it should on longer be used If your code
uses deprecated classes, methods or fields the compiler will give you a warning.

@Deprecated

Public class MyComponent

{

}
The use of the @Deprecated annotation above the class declaration marks
the class as deprecated.

The use of the @Deprecated annotation above the fieldclass declaration marks

the field as deprecated.

7. @SuppressWarnings specifies that one or more warnings that might be issued

by the compiler are to be suppressed. The warnings to suppress are specified

by name, in string form. This annotation can be applied to any type of

declaration.

@SuppressWarnings

– Makes the compiler suppress warnings for a given methods

– If a method class a deprecated method, or makes an insecure type

case, the compiler may generate a warning.

– You can suppress these warnings by annotating the method containing

the code with the @SuppressWarnings annotation

@ SuppressWarnings

public void methodWithWarning()

{

}

9. Write the short note about the following

i.Prepared statement

ii.Batch Update

The preparedStatement object allows you to execute parameterized queries.

A SQL query can be precompiled and executed by using the

PreparedStatement object. ∙ Ex: Select * from publishers where pub_id=?

Here a query is created as usual, but a question mark is used as a placeholder
for a value∙ that is inserted into the query after the query is compiled.

The preparedStatement() method of Connection object is called to
return the∙ PreparedStatement object.

Ex: PreparedStatement stat; stat= con.prepareStatement(“select * from
publisher where pub_id=?”)

Batch Updates

A batch update is a batch of updates grouped together, and
sent to the database in one "batch", rather than sending the
updates one by one.

Sending a batch of updates to the database in one go, is faster than
sending them one by one, waiting for each one to finish. There is less
network traffic involved in sending one batch of updates (only 1 round
trip), and the database might be able to execute some of the updates
in parallel. The speed up compared to executing the updates one by
one, can be quite big.

You can batch both SQL inserts, updates and deletes. It does not
make sense to batch select statements.

There are two ways to execute batch updates:

1. Using a Statement
2. Using a PreparedStatement

i) Add Batch

ii) Clear Batch

iii) Execute Batch

Adv Java - IAT -2 QP Page 16
Statement object is used to execute batch updates. You do so
using the addBatch() and executeBatch() methods.
Here is an example:

Statement statement = null;

try{

 statement = connection.createStatement();

 statement.addBatch("update people set firstname='John' where id=123");

statement.addBatch("update people set firstname='Eric' where id=456");

statement.addBatch("update people set firstname='May' where id=789");

 int[] recordsAffected = statement.executeBatch();

} finally {

 if(statement != null) statement.close();

}

First you add the SQL statements to be executed in the
batch, using the addBatch() method.

Then you execute the SQL statements using the
executeBatch(). The int[] array returned by the

executeBatch() method is an array of int telling how many

records were affected by each executed SQL statement in the batch

10 Discuss the advanced JDBC data types

1. BLOB

∙ The JDBC type BLOB represents an SQL3 BLOB (Binary Large Object).

∙ A JDBC BLOB value is mapped to an instance of the Blob interface in the Java

programming language.

∙ A Blob object logically points to the BLOB value on the server rather than

containing its binary data, greatly improving efficiency.

∙ The Blob interface provides methods for materializing the BLOB data on the client

when that is desired.

2. CLOB

∙ The JDBC type CLOB represents the SQL3 type CLOB (Character Large Object). ∙ A

JDBC CLOB value is mapped to an instance of the Clob interface in the Java

programming language.

Adv Java - IAT -2 QP Page 17
∙ A Clob object logically points to the CLOB value on the server rather than

containing its character data, greatly improving efficiency.

∙ Two of the methods on the Clob interface materialize the data of a CLOB object on

the client. 3. ARRAY

∙ The JDBC type ARRAY represents the SQL3 type ARRAY.

∙ An ARRAY value is mapped to an instance of the Array interface in the Java

programming language.

∙ An Array object logically points to an ARRAY value on the server rather than

containing the elements of the ARRAY object, which can greatly increase

efficiency.

∙ The Array interface contains methods for materializing the elements of the ARRAY

object on the client in the form of either an array or a ResultSet object.

Example : ResultSet rs = stmt.executeQuery(“SELECT NAMES FROM
STUDENT”); rs.next();

 Array stud_name=rs.getArray(“NAMES”);

4. DISTINCT

∙ The JDBC type DISTINCT represents the SQL3 type DISTINCT.

∙ For example, a DISTINCT type based on a CHAR would be mapped to a String

object, and a DISTINCT type based on an SQL INTEGER would be mapped to an

int.

∙ The DISTINCT type may optionally have a custom mapping to a class in

the Java programming language.

∙ A custom mapping consists of a class that implements the interface SQLData and an

entry in a java.util.Map object.

5. STRUCT

∙ The JDBC type STRUCT represents the SQL3 structured type.

∙ An SQL structured type, which is defined by a user with a CREATE TYPE statement,
consists of one or more attributes. These attributes may be any SQL data type,
built-in or user defined.

∙ A Struct object contains a value for each attribute of theSTRUCT value it represents.

∙ A custom mapping consists of a class that implements the interface SQLData and an

entry in a java.util.Map object.

6. REF

∙ The JDBC type REF represents an SQL3 type REF<structured type>. ∙ An SQL REF

references (logically points to) an instance of an SQL structured type, which the REF
persistently and uniquely identifies.

∙ In the Java programming language, the interface Ref represents an

SQL REF.

 7. JAVA_OBJECT

∙ The JDBC type JAVA_OBJECT, makes it easier to use objects in the Java

programming language as values in a database.

∙ JAVA_OBJECT is simply a type code for an instance of a class defined in

the Java programming language that is stored as a database object.

∙ The JAVA_OBJECT value may be stored as a serialized Java object, or it may be

stored in some vendor-specific format.

∙ The type JAVA_OBJECT is one of the possible values for the column DATA_TYPE

in the ResultSet objects returned by various DatabaseMetaData methods,

including getTypeInfo, getColumns, and getUDTs.

∙ Values of type JAVA_OBJECT are stored in a database table

using the method PreparedStatement.setObject.

∙ They are retrieved with They are retrived with the methods

ResultSet.getObject or CallableStatement.getObject and updated

with

the ResultSet.updateObject method.

For example, assuming that instances of the class Engineer are stored in the

column ENGINEERS in the table PERSONNEL, the following code fragment, in

which stmt is a Statement object, prints out the names of all of the engineers.

	1)import
	2. Example of import attribute
	2. Example of errorPage attribute
	1. Note: The exception object can only be used in the error page.

	4. Example of isErrorPage attribute
	4.contentType
	2. Example of contentType attribute
	2. Example of buffer attribute
	login.jsp
	else

	main.jsp

