

CMR

INSTITUTE OF

TECHNOLOGY

USN 1 C

Internal Assessment Test 3 – March 2023

Note: Answer any full 5 questions. All questions carry equal marks. Total Marks: 50

1. a What is Map Reduce? Sketch a neat diagram and explain the logical data flow in Map Reduce?

Map Reduce:

MapReduce is a programming model and an associated implementation for processing and generating

big data sets with a parallel, distributed algorithm on a cluster. A MapReduce program is composed of a

map procedure, which performs filtering and sorting, and a reduce method, which performs a summary

operation.

 One map task is created for each split which then executes map function for each record in the

split.

 It is always beneficial to have multiple splits, because time taken to process a split is small as

compared to the time taken for processing of the whole input. When the splits are smaller, the

processing is better load balanced since we are processing the splits in parallel.

 However, it is also not desirable to have splits too small in size. When splits are too small, the

overload of managing the splits and map task creation begins to dominate the total job execution

time.

 For most jobs, it is better to make split size equal to the size of an HDFS block (which is 64

MB, by default).

 Execution of map tasks results into writing output to a local disk on the respective node and not

to HDFS.

 Reason for choosing local disk over HDFS is, to avoid replication which takes place in case of

HDFS store operation.

 Map output is intermediate output which is processed by reduce tasks to produce the final

output.

 Once the job is complete, the map output can be thrown away. So, storing it in HDFS with

replication becomes overkill.
o In the event of node failure before the map output is consumed by the reduce task,

Hadoop reruns the map task on another node and re-creates the map output.
o Reduce task don't work on the concept of data locality. Output of every map task is fed to

the reduce task. Map output is transferred to the machine where reduce task is
o running.

 On this machine the output is merged and then passed to the user defined reduce function.

 Unlike to the map output, reduce output is stored in HDFS (the first replica is stored on the local

node and other replicas are stored on off-rack nodes). So, writing the reduce output

Sub: Big Data Analytics Code: 20MCA352

Date: 15.03.2023 Duration: 90 mins
Max

Marks: 50
Sem:

III A &

B Branch: MCA

2 a How does a Map reduce model works with a single reduce task? Explain with a neat diagram.

A Map Task is a single instance of a MapReduce app. These tasks determine which records to process

from a data block. The input data is split and analyzed, in parallel, on the assigned compute resources in

a Hadoop cluster. This step of a MapReduce job prepares the <key, value> pair output for the reduce

step.

A Reduce Task processes an output of a map task. Similar to the map stage, all reduce tasks occur at the

same time, and they work independently. The data is aggregated and combined to deliver the desired

output. The final result is a reduced set of <key, value> pairs which MapReduce, by default, stores in

HDFS.

The Map and Reduce stages have two parts each.

The Map part first deals with the splitting of the input data that gets assigned to individual map tasks.

Then, the mapping function creates the output in the form of intermediate key-value pairs.

The Reduce stage has a shuffle and a reduce step. Shuffling takes the map output and creates a list of

related key-value-list pairs. Then, reducing aggregates the results of the shuffling to produce the final

output that the MapReduce application requested.

3. a Discuss the data format of Weather Dataset and write a Unix code to retrieve the maximum temperature.

Data Format

 NCDC data (National Climatic Data Center)

 The data is stored using a line-oriented ASCII format, in which each line is a record

 Focus is on basic elements such as temperature

 Data files are organized by date and weather station

4. a How does a Map reduce model works with a multi- reduce tasks? Explain with a neat diagram.

 MapReduce program executes in three stages, namely map stage, shuffle stage, and reduce stage.

o Map stage − The map or mapper’s job is to process the input data. Generally the input

data is in the form of file or directory and is stored in the Hadoop file system (HDFS).

The input file is passed to the mapper function line by line. The mapper processes the

data and creates several small chunks of data.

o Reduce stage − This stage is the combination of the Shuffle stage and the Reduce stage.

The Reducer’s job is to process the data that comes from the mapper. After processing, it

produces a new set of output, which will be stored in the HDFS.

 During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate servers in

the cluster.

 The framework manages all the details of data-passing such as issuing tasks, verifying task

completion, and copying data around the cluster between the nodes.

 Most of the computing takes place on nodes with data on local disks that reduces the network

traffic.

 After completion of the given tasks, the cluster collects and reduces the data to form an

appropriate result, and sends it back to the Hadoop server.

5. a Write a Java Map Reduce code to find maximum temperature from the weather data set.

6. a What is Hadoop Streaming? Find maximum temperature from NCDC dataset by writing code in Python

and Ruby.

Hadoop Streaming is a utility in Hadoop that allows developers to write MapReduce programs in any

programming language that can read and write to standard input/output streams, such as Python, Ruby,

Perl, or even shell scripts.

With Hadoop Streaming, developers can write MapReduce programs without having to write code in

Java, the primary language for Hadoop development. Instead, they can use their preferred language to

write the MapReduce functions, such as the mapper and reducer functions, as long as they conform to

the standard input/output format of Hadoop.

Hadoop Streaming works by reading the input data from Hadoop Distributed File System (HDFS) and

piping it to the external program specified by the developer. The program processes the input data and

writes the output to standard output, which is then read by Hadoop and written back to HDFS.

7. a Explain in detail the steps involved in running the map reduce program in a cluster

 Packaging

 Launching a job

 The map reduce web UI

 Retrieving the results

 Debugging a job

Packaging

◼ The program need not be modified to run on a cluster.

◼ The programs have to be packages as JAR files.

◼ It is done through Ant tool

The map reduce web UI

Debugging a Job:

8. a Explain in detail the configuration file, its APIs and access Properties

9. a Write a short note on: Remote Debugging and Hadoop Logs

Remote Debugging

Remote debugging in Hadoop refers to the process of debugging Hadoop applications running on a

remote cluster. Hadoop is a distributed computing framework, which means that the application code

runs on a cluster of multiple nodes, each with its own CPU and memory resources. Remote debugging

allows developers to debug their Hadoop applications without having to physically access the cluster.

To perform remote debugging in Hadoop, developers typically use an integrated development

environment (IDE) such as Eclipse or IntelliJ IDEA. The IDE is configured to connect to the Hadoop

cluster using the Hadoop Distributed File System (HDFS) and the MapReduce framework. Once the IDE

is connected to the cluster, developers can set breakpoints and step through the code to identify and fix

errors.

Remote debugging in Hadoop is essential for troubleshooting complex Hadoop applications, as it allows

developers to inspect the state of the application and the data it processes while it is running on the

cluster. It also helps to reduce the time required to identify and fix errors, as developers can debug their

code in real-time without having to run the application repeatedly.

10. a Write a map reduce program for word count problem

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text value, Context context) throws IOException, InterruptedException

{

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,

InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = Job.getInstance(conf, "word count");

 job.setJarByClass(WordCount.class);

 job.setMapperClass(TokenizerMapper.class);

 job.setCombinerClass(IntSumReducer.class);

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

