FN'\g%TUTE OF USN 1 |C \\\
TECHNOLOGY CVRIT
Internal Assessment Test 3 — March 2023
Sub: Big Data Analytics Code: | 20MCA352
Date: | 15.03.2023 | Duration: | 90 mins M'\gfli(s: 50 sem: | Q * Branch: MCA

Note: Answer any full 5 questions. All questions carry equal marks. Total Marks: 50

1. a What is Map Reduce? Sketch a neat diagram and explain the logical data flow in Map Reduce?

Map Reduce:

MapReduce is a programming model and an associated implementation for processing and generating
big data sets with a parallel, distributed algorithm on a cluster. A MapReduce program is composed of a
map procedure, which performs filtering and sorting, and a reduce method, which performs a summary
operation.

One map task is created for each split which then executes map function for each record in the
split.
It is always beneficial to have multiple splits, because time taken to process a split is small as
compared to the time taken for processing of the whole input. When the splits are smaller, the
processing is better load balanced since we are processing the splits in parallel.
However, it is also not desirable to have splits too small in size. When splits are too small, the
overload of managing the splits and map task creation begins to dominate the total job execution
time.
For most jobs, it is better to make split size equal to the size of an HDFS block (which is 64
MB, by default).
Execution of map tasks results into writing output to a local disk on the respective node and not
to HDFS.
Reason for choosing local disk over HDFS is, to avoid replication which takes place in case of
HDFS store operation.
Map output is intermediate output which is processed by reduce tasks to produce the final
output.
Once the job is complete, the map output can be thrown away. So, storing it in HDFS with
replication becomes overkill.

o In the event of node failure before the map output is consumed by the reduce task,

Hadoop reruns the map task on another node and re-creates the map output.
o Reduce task don't work on the concept of data locality. Output of every map task is fed to
the reduce task. Map output is transferred to the machine where reduce task is

o running.
On this machine the output is merged and then passed to the user defined reduce function.
Unlike to the map output, reduce output is stored in HDFS (the first replica is stored on the local
node and other replicas are stored on off-rack nodes). So, writing the reduce output

2: get new application
MapReduce |1:runjob
program [4: submit application ResourceManager
client JUM
cient node :

resource manager node
Sa: startcomainer'.s“ _...“'— —

8 allocate resources
NodeManager
3: copy job
resources 5
5b: launch }
6: initialize
job*, MRAppMaster """":fé'iﬁéi"' NodeManager
node manager node 9b: Iaun(hg
v & Toretrieve v
B input splits task JVM
Shared 10: retrieve job resources
Flesystem < ! YarnChild
(e.g., HDFS) -
11:run§
MapTask
or
ReduceTask
node manager node

2 a How does a Map reduce model works with a single reduce task? Explain with a neat diagram.

A Map Task is a single instance of a MapReduce app. These tasks determine which records to process
from a data block. The input data is split and analyzed, in parallel, on the assigned compute resources in
a Hadoop cluster. This step of a MapReduce job prepares the <key, value> pair output for the reduce
step.

A Reduce Task processes an output of a map task. Similar to the map stage, all reduce tasks occur at the
same time, and they work independently. The data is aggregated and combined to deliver the desired
output. The final result is a reduced set of <key, value> pairs which MapReduce, by default, stores in
HDFS.

input
HDFS

{ split 0 }»

output
ESae e e s e e e RS
merge :
§osplit oo BT o} > E ~»i part0 E— HDFS
- : replication

The Map and Reduce stages have two parts each.

The Map part first deals with the splitting of the input data that gets assigned to individual map tasks.
Then, the mapping function creates the output in the form of intermediate key-value pairs.

The Reduce stage has a shuffle and a reduce step. Shuffling takes the map output and creates a list of
related key-value-list pairs. Then, reducing aggregates the results of the shuffling to produce the final
output that the MapReduce application requested.

3. a Discuss the data format of Weather Dataset and write a Unix code to retrieve the maximum temperature.

Data Format
e NCDC data (National Climatic Data Center)
e The data is stored using a line-oriented ASCII format, in which each line is a record
e Focus is on basic elements such as temperature
e Data files are organized by date and weather station

Example 2-1. Formar of a Narional Climare Dara Center record

0057

332130 # USAF weather station identifier
990999 # WBAN weather station identifier
19500101 # observation date

0300 # observation time

4

+51317 # latitude (degrees x 1000}
+028783 # longitude (degrees x 1000)
FM-12

+0171 # elevation {meters)

99999

Vozo

320 # wind direction (degrees)

1 # quality code

N

o072

1

00450 # sky ceiling height (meters)

1 # quality code

C

M

010000 # visibility distance (meters)

1 # quality code

M

9

-0128 # air temperature (degrees Celsius x 10)
1 # quality code

-0139 # dew point temperature (degrees Celsius x 10)
1 # gquality code

10268 # atmospheric pressure (hectopascals x 10)
1 # guality code

Example 2-2. A program for finding the maximum recorded temperature by year from NCDC weather
records

81 usr /bin/eny bash
for year in all/*
i
echo -ne “Dasenane $year g7\t
qunzip -¢ dyear | \
ik '{ temp = substr($0, B8, 5) + 0;
q = substr(§0, %, 1);
if (temp 19999 & g /[01459]/ & temp > max) max = temp |
END { print max }
done

4. a How does a Map reduce model works with a multi- reduce tasks? Explain with a neat diagram.

o MapReduce program executes in three stages, namely map stage, shuffle stage, and reduce stage.

o Map stage — The map or mapper’s job is to process the input data. Generally the input
data is in the form of file or directory and is stored in the Hadoop file system (HDFS).
The input file is passed to the mapper function line by line. The mapper processes the
data and creates several small chunks of data.

o Reduce stage — This stage is the combination of the Shuffle stage and the Reduce stage.
The Reducer’s job is to process the data that comes from the mapper. After processing, it
produces a new set of output, which will be stored in the HDFS.

« During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate servers in
the cluster.

o The framework manages all the details of data-passing such as issuing tasks, verifying task
completion, and copying data around the cluster between the nodes.

e Most of the computing takes place on nodes with data on local disks that reduces the network
traffic.

o After completion of the given tasks, the cluster collects and reduces the data to form an
appropriate result, and sends it back to the Hadoop server.

output
HDFS

'
) split0 | map

B e S S e R S SR R e SR s e reduce |—»| - HDFS
................................. : replication

redues i b o P FS
H replication

) : ;
I splitz = map - R ypepppeppppepspeyey . -

5. a Write a Java Map Reduce code to find maximum temperature from the weather data set.

Example 2-3. Mapper for maximum temperature example
import jawva.io.IO0Exception;

import org.apache.hadoop.ic.IntWritable;
import org.apache.hadoop.ic.longhritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, ImtWritable» {

private static fimal int MISSING = 9999;

@0verride
public woid map(LongWritable key, Text walue, Context comtext)
throws IOException, InterruptedException {

String line = walue.toString();

Strimg year = line.substring(15, 149);

imt airTemperature;

if (line.charAt({87) == "+") { [/ parseInt doesn’t like leading plus signs
airTemperature = Integer.parseInt({line.substring(88, 9z2));

T oelse {
airTemperature = Integer.parseInt{line.substring(87, 92));

stri ng quality = line.substring(9z, 93);
if (airTemperature 1= MISSING && quality.matches("[01459]1")) {
context.write(new Text(year), new IntWritabl e(aeremnerthTE],,

Example 2-4. Reducer for maximum temperature example

import java.io.IOException;

import org.apache.hadoop.ic.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable: {

@lverride

public void reduce(Text key, Iterable<IntWritable> wvalues,
Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN VALLUE;
for (IntWritable wvalue : walues) {
maxValue = Math.max({maxValue, value.get());

}
context.write(key, new ImtWritable{ma=Value));

Example 2-5. Application to find the maximum temmperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.ic.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {

public static woid main(String[] args) throws Exception {
if (args.length 1= 2} {
System.err.println{"Usage: MaxTemperature <input path> <cutput path:");
System.exit(-1);
}

Job job = mew Job({);
job.setlarByClass{MaxTemperature.class);
job.setJobMame("Max temperature™);

FileInputFormat.addInputPath{job, new Path{args[0]});
FileOwtputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass (MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputWalueClass{IntWritable.class);

System.exit(job.waitForCompletion(true) 7 0 : 1};

¥
}

6. a What is Hadoop Streaming? Find maximum temperature from NCDC dataset by writing code in Python
and Ruby.

Hadoop Streaming is a utility in Hadoop that allows developers to write MapReduce programs in any
programming language that can read and write to standard input/output streams, such as Python, Ruby,
Perl, or even shell scripts.

With Hadoop Streaming, developers can write MapReduce programs without having to write code in
Java, the primary language for Hadoop development. Instead, they can use their preferred language to
write the MapReduce functions, such as the mapper and reducer functions, as long as they conform to
the standard input/output format of Hadoop.

Hadoop Streaming works by reading the input data from Hadoop Distributed File System (HDFS) and

piping it to the external program specified by the developer. The program processes the input data and
writes the output to standard output, which is then read by Hadoop and written back to HDFS.

Example 2-10. Map function for maximum temperature in Python

#1/usr/bin/env python

import re
import sys

for line in sys.stdin:
val = line.strip()
(year, temp, q) = (val[15:19], wal[87:92], wval[92:93])
if (temp != "+9999" and re.match("[o01459]", g)):
print "Es\t¥s" % (year, temp)

Example 2-11. Reduce function for maximum temperature in Python

#1/usr/bin/env python
import sys

(last_key, max_val) = (Nome, 0)
for line in sys.stdin:
(key, wval) = line.strip(}.split({™\t")
if last key and last key != key:
print "Es\t¥s" X (last key, max wval)
(last_key, max_wval) = (key, imt{val))
else:
(last_key, max_val) = (key, maw{max_wval, int(wval)))

if last_key:
print "Es\t¥s" ¥ (last_key, max_wal)

#1/usr/binfenv ruby

STDIN.each line do |line|
val = line
year, temp, q = val[15,4], val[87,5], wal[92,1]

puts “#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)
end

#1/usr/binfenv ruby

last key, max val = nil, O
STDIN.each line do |line|
key, val = line.split("\t")
if last key B& last key != key
puts “#{last key}\t#{max wall}"
last key, max val = key, val.to i
else
last key, max val = key, [max wval, val.to i].max
end
end
puts “#{last key}\t#{max wal}" if last key

7. a Explain in detail the steps involved in running the map reduce program in a cluster

e Packaging

e Launching a job

e The map reduce web Ul
e Retrieving the results

e Debugging a job

Packaging
B The program need not be modified to run on a cluster.
B The programs have to be packages as JAR files.
B It is done through Ant tool

<jar
destfile="hadoop-examples.jar" basedir="${classes.dir}" />

The map reduce web Ul

ip-10-250-110-47 Hadoop Map/Reduce Administration

=l bes W..lul'\n.h.C

Started:s 5 |.l-nr1|cl§;|1s.‘.l.l:mm

“ersion: O Z00, ITE

o e besed = ﬂﬂuﬂrgﬂ:b B T Shm0ns kest rmadia by
Betarditior: 30CG01 108

Cluster Summary (Heap Size is 53.75 MB/S88.94 MB)

Mape | Asduces | Tosal | | Map Taek C: | Task C | #ea. | |
B |2 B |EE |a= | == [1a.0a B |

Schaeduling Information

| Mama | I
= | Pava I

Eusor [Jaiid, Pricrity. sar. Mams) [
Emaarrd o e SETHT el | = e i e Lo wm s kol swract TIE0CH St

Runming Jobs

Aodwcae

Jokd Brionty | User kzene |=;P*-I|=|

jom SOODOETI0E11_ G002 | MORMAL | oot | Hax - |4‘.'5s-5..

Completed Jobs

Wap % Mo | Ma Fedoce Feduce |Beduces Job Schoedul
doid Frionty | User (Mame | SSRCL, | 7081 | Completed | Commieis Toasi & =

ol SCOS04T10ETT 000 | HORMAL | goneo " e s 14 a4 roo = =0 aa A

Failed Jobs

|

Local Logs
g chrmciory, Job Trackoor Higlong
Bt e, ST

Debugging a Job:

public void map(Longkritable key, Text value, Confext context)
throws I0Exception, InterruptedException {

parser.parse(value);
if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
if (airTemperature » 1000) {
System.err.printIn("Temperature over 100 degrees for input: " + value);
context.setStatus("Detected possibly corrupt record: see logs.");
context. getCounter (Temperature. OVER _100). increment(1);

}

context.write(new Text(parser.getYear()), new IntWritable(airTemperature));

}

8. a Explain in detail the configuration file, its APIs and access Properties

The hadoop-local. xml file contains the default Hadoop configuration for the default
filesystem and the jobtracker:

<?xml version="1.0"7>
<configuration>

<property>
<name>fs.default.name</name>
<value>file:///</value>

</property>

<property>
<name>mapred. job. tracker</name>
<value>local</value>

</property>

¢/configuration>

The settings in hadoop-localhost.xml point to a namenode and a jobtracker both run-
ning on localhost:

<?xml version="1.0"7>
<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost/</value>

</property>

<property>
<name>mapred. job. tracker</name>
<value>localhost:8021¢</value>

</property>

¢/configuration>

There are several notable differences between the two APls:

The new API favors abstract classes over interfaces, since these are easier to evolve.
For example, you can add a method (with a default implementation) to an abstract
class without breaking old implementations of the class?. For example, the
Mapper and Reducer interfaces in the old API are abstract classes in the new APL

The new AP1 is in the org.apache.hadoop.mapreduce package (and subpackages).
The old API can still be found in org.apache.hadoop.mapred.

The new API makes extensive use of context objects that allow the user code to
communicate with the MapReduce system. The new Context, for example, essen-
tially unifies the role of the JobConf, the OutputCollector, and the Reporter from
the old APL.

In both APIs, key-value record pairs are pushed to the mapper and reducer, but in
addition, the new API allows both mappers and reducers to control the execution
flow by overriding the run() method. For example, records can be processed in
batches, or the execution can be terminated before all the records have been pro-
cessed. In the old API this is possible for mappers by writing a MapRunnable, but no
equivalent exists for reducers.

Configuration has been unified. The old API has a special JobConf object for job
configuration, which is an extension of Hadoop's vanilla Configuration object
(used for configuring daemons; see “The Configuration API” on page 146). In the
new API, this distinction is dropped, so job configuration is done through a
Configuration.

Job control is performed through the Job class in the new API, rather than the old
JobClient, which no longer exists in the new APL

The old and the new Java MapReduce APls

The Java MapReduce API used in the previous section was first released in Hadoop
0.20.0. This new API, sometimes referred to as “Context Objects,” was designed to

make the API easier to evolve in the future. It is type-incompatible with the old, how-
ever, so applications need to be rewritten to take advantage of it.

9. a Write a short note on: Remote Debugging and Hadoop Logs
Remote Debugging

Remote debugging in Hadoop refers to the process of debugging Hadoop applications running on a
remote cluster. Hadoop is a distributed computing framework, which means that the application code
runs on a cluster of multiple nodes, each with its own CPU and memory resources. Remote debugging
allows developers to debug their Hadoop applications without having to physically access the cluster.

To perform remote debugging in Hadoop, developers typically use an integrated development
environment (IDE) such as Eclipse or IntelliJ IDEA. The IDE is configured to connect to the Hadoop
cluster using the Hadoop Distributed File System (HDFS) and the MapReduce framework. Once the IDE
is connected to the cluster, developers can set breakpoints and step through the code to identify and fix
errors.

Remote debugging in Hadoop is essential for troubleshooting complex Hadoop applications, as it allows
developers to inspect the state of the application and the data it processes while it is running on the
cluster. It also helps to reduce the time required to identify and fix errors, as developers can debug their
code in real-time without having to run the application repeatedly.

Hadoop Logs:
S a” al S g e g
Logs Primary audience Description Further information
System daemon logs Administrators Each Hadoop daemon produces alogfile (us- “System log-
ing log4j) and another file that combines files”™ on page 307 and
standard out and error. Written in the direc- “Logging” on page 349,
tory defined by the HADOOP_LOG_DIRen
vironment variable.
HDFS audit logs Administrators A log of all HOFS requests, turned off by de- “Audit Log-
fault. Written to the namenode’s log, al ging” on page 344
though this is configurable.
Logs Primary audience Description Further information
MapReduce jobhistorylogs ~ Users Alog of the events (such as task completion) “Job His
that occur in the course of running a job. tory” on page 166,
Saved centrally on the jobtracker, and in the
job’s output directory in a__logs/history sub-
directory.
MapReduce task logs Users Each tasktracker child process produces a This section.

logfile using log4j (called sysiog), a file for
data sent to standard out (stdout), and a file

for standard error (stderr). Written in the
useriogs subdirectoryofthedirectory defined
by the HADOOP_LOG_DIR environment
variable.

10. a Write a map reduce program for word count problem

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.nasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

¥
k
¥

public static class IntSumReducer extends Reducer<Text,IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws I0Exception,
InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

result.set(sum);
context.write(key, result);

k
¥

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count™);
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FilelnputFormat.addinputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

¥

