CMR
INSTITUTE OF TECHNOLOGY

USN
Internal Assessment Test 111 — May 2023
Sub: Data Structures Sub Code: 22MCA13
Date — ., Max 5 | Sem Branch
: 24/05/2023 Duration: | 90 min’s Marks: 0 . | . MCA
Note : Answer FIVE FULL Questions, choosing ONE full guestion from each
Part.
OBE
PART I MARKS
CO RBT
1 Define tree? With example explain the following i) Degree of a node, [10]
ii)Level of a binary tree iii)Siblings iv)Ancestors v) Root Cco4 L2
OR
2 |Define Hashing. Explain the different hashing functions with example. [10] o4 L3
PART 11 [5+5]
3 |Define a binary tree. With example show array and linked representation of CO4 L2
binary tree. OR
4 Mention different types of binary trees and explain them briefly. State the [5+5] o L3
properties of a binary tree in detail.
PART Il
5 |Write the C-routines to traverse the given tree using i)Inorder ii) Pre-order
iii) Post-order 10
- o (101 Heos L3
=
)
OR
6 What is a graph? Write the terminologies used in graph. [5+5]
Explain matrix and adjacency list representation of graphs with example. CO5 L2
PART IV [4+6] Cco4 L4
7 [i)Construct a binary search tree for inputs i) 22, 14, 18, 50, 9, 15, 7, 6, 12,
32, 25 ii)Construct a binary tree where preorder and Inorder of a traversal
yields the following sequence of nodes. Inorder: 8,4,10,9,11,2,5,1,6,3,7
Preorder:1,2,4,8,9,10,11,5,3,6,7 OR
\What is threaded binary tree? Write the rules to construct the threads and [10] CO5 L3
8 lexplain with example.
PART V CO5 L3
9 |Sort the numbers given below using radix sort and insertion sort 345, 654,
924, 123, 567, 472, 555, 808, 911 with appropriate figure. [5+5]
OR
10 What is collision? Explain the different collision resolution techniques, if [10] CO5 L4
K=3,2,9,6,11,13,7,12 and h(k)=2k+3 where M=10. Use division method
and Linear probing to store these values in a hash table.

Solution

1. Define tree? With example explain the following i) Degree of a node ii)Level of a binary tree iii)Siblings iv)Ancestors V)
Root
The tree is a nonlinear data structure. This structure is mainly used to represent data containing a
hierarchical relationship between elements, e.g., records, family trees and tables of contents. A tree
structure means that the dataare organized in a hierarchical manner.
Definition: A tree is a finite set of one or more nodes such that
i) There is a specially designated node called the root.

ii) The remaining nodes are partitioned into n>0 disjoint sets Ti, T, ..., Tn, Where each ofthese sets is atree. Ty, To, ..., Tn,
are called the subtrees of the root.

LEVEL

ASgo

There are many terms that are often used when referring to frees.

4

i) A node stands for the item of information plus the branches to other nodes.
Consider the tree in Fig.4.2. This tree has 13 nodes, each item of data being a single letter. The
root is A, and we will normally draw trees with the root at the top.

i) The numbe r of subtrees of a node is called its degree.
The degree of Ais 3, of Cis I, and of F is zero.

i) Nodes that have degree zero are called leaf or terminal nodes.
{K,LF,GMI]} is the set of leaf nodes.

iv) Consequently, the other nodes are referred to as nonterminals.

v) The roots of the subtrees of a node X are the children of X. X is the parent of its children.
Thus, the children of D are H, I, and 1; the parent of D is A.

Every node N in a tree, except the root, has a unique parent, called the predecessor of N.

vi) Children of the same parent are said to be siblings.
H, I, and] are siblings.

vii) We can extend this terminology if we need to so that we can ask for the grandparent of M, which
is D, and so on.

viii) A node L is called a descendant of a node N if there is a succession of children from Nto L. Nis
called an ancestor of L.

ix) The degree of a tree is the maximum, of the degree of the nodes in the tree.
The tree of Fig.4.2 has degree 3. The ancestors of a node are all the nodes along the path from the
root to that node. The ancestors.of M.are A,.D,.and H.

x) The level of a node is defined by letting the root be at level one. If a node is at level |, then its
children are at level [+1.
Fig. 4.2 shows the level of all nodes in that tree.

xi) The height or depth of a tree is defined to be the maxjmym level of any node in the tree. Thus,
the depth of the tree in Fig. 4.2 is 4.

2.

Define Hashing. Explain the different hashing functions with example
Hashing
Linear search has a running time proportional to O(n), while binary search takes time proportional to
O(logzn), where n is the number of elements in the array. Binary search and binary search trees are
efficient algorithms to search for an element. Using hashing, we can perform the search operation in
time proportional to O(1) i.e. in constant time, irrespective of its size.
Let us take an example of a small company of 100 employees, each employee is assigned an
Emp_ID in the range 0-99. To store the records in an array, each employee’s Emp_ID acts as an index
into the armay where the employee’s record will be stored as shown in Fig. 5.1. In this case, we can
directly access the record of any employee, once we know his Emp_ID, because the amay index is the
same as the Emp_ID number.
Different Hash Functions
Many hash functions are being used in practice, namely:
)] Division
i) Mid-Square
iii) Folding
iv) Folding with Reversing
V) Correspondence between letter and address
Vi) Additive transformation
1) Division:

The key k is divided by some number D and the remainder is used as the home bucket for k. Formally,

h(k) =k % D
This hash function assumes that the keys are non-negative integers.
This function gives bucket addresses in the range 0 through D-1, so the hash table must have at least b = D buckets.

For practical dictionaries, a very uniform distribution of keys to buckets is obtained when D has no prime factor smaller than
20.

Choose a number D larger than the number n of keys in K. The number D is usually chosen to be a prime number or a number
without s mall divisors, since this frequently minimizes the number of collisions.

If we want the hash address to range from 1 to m, use the formula: H(k) =k % m + 1.

Example: A compa ny has 68 employees. Each e mployee is assigned a unique 4 -digit employee-id.
Suppose L consists of 100 two-digit addresses: 00, 01, 02, ..., 99. Apply the division hash function to

t

he employee-ids: 3205, 7148, 2345 and obtain the hash address.

Solution: Choose a prime number m close to 99 i.e. m = 97. Then:

2)

H(3205) = 3205 % 97 = 4
H(7148) = 7148 % 97 = 67
H(2345) = 2345 % 97 = 17

Mid Square: The key k is squared. Then the hash function H is defined by

H(k) =1
where | is obtained by deleting digits from both ends of k?. The same positions of k? must be used
for all of the keys.

Example: A compa ny has 68 employees. Each e mployee is assigned a unique 4-digit e mployee-id.
Suppose L consists of 100 two-digit addresses: 00, 01, 02, ..., 99. Apply the midsquare hash
function to the employee-ids: 3205, 7148, 2345 and obtain the hash address.

Solution: The following calculations are performed:

k 3205 7148 2345
k? 10272025 | 51093904 | 5499025
H(k) 72 93 99

The fourth and fifth digits, counting from the right are chosen for the hash address.

3) Folding: The key k is partitioned into a number of parts, ki, ko, ... k. where each part, except
possibly the last, has the same number of digits as the required address. Then the se parts are
added together, ignoring the last carry. That is,

H(k) = ki + k2 +... + k¢
where the leading-digit carries, if any, ignored.

Sometimes, for extra "milling”, the even numbered parts, k;, ki, ..., are
reversed before the addition.

Example: A compa ny has 68 employees. Each e mployee is assigned a unique
4-digit e mployee-id. Suppose L consists of 100 two-digit addresses: 00, 01,
02, ..., 99. Apply the folding hash function to the employee-ids: 3205, 7148,
2345 and obtain the hash address.
Solution: Chopping the key k into two parts and adding yields the
following hash addresses:H(3205): 32 + 05 = 37,
H(7148): 71 + 48 = 19,
H(2345): 23 + 45 = 68
Observe that the leading digit 1 in H(7148) is ighored.

4) Folding with Reversing: The method is the same as the folding method, except that the even
parts (i.e. the 2" part, 4" part, 6" part, etc. are reversed before adding, thus producing the
following hash addresses:

H(3205) = 32 + 50 = 82,
H(7148) = 71 + 84 =55,
H(2345) = 23 + 54 =77

3. Define a binary tree. With example show array and linked representation of binary tree
BINARY TREES

A binary tree is a special kind of tree which can be easily maintained in the computer. Although such a tree may
seem to be very restrictive, more general trees may be viewed as binary trees.

A binary tree T is defined as a finite set of glements, called nodes, such that:

i) Tis empty (called the null tree or empty tree), or
i) T contains a distinguished node R, called the root of T, and the remaining nodes of T form an
ordered pair of disjoint binary trees T; and T..

a) If T does contain a root R, then the two trees T; and T. are called, respectively, the left and right

subtrees of R.

b) If T1 is nonempty, then its root is called the left successor of R; similarly, if T: is nonempty, then
its root is called the right successor of R.

Binary Tree Representations: Array and linked Representation of Binary Trees

Array Representation
The array or sequential representation of a tree uses a single one-dimensional array, TREE as follows:

1) The root R of T is stored in JREE[1].
2) If a node N occupies JREE[K], then its left child is stored in TREE[2*K] and its right child in
TREE[2* K+1].

Location 0 is not used.

NULL is used to indicate an empty subtree. TREE[1] = NULL indicates the tree is empty.

In other words, the nodes are numbered from 1 to n as per a full binary tree. Location 0 is not. . used.
The nodes are then stored in a one-dimensional array whose position 0 is left e mpty, and the node
numbered x is.. mapped. to position with index x in the array. We can easily determine the locations of
the parent, left child and right child of any node, i, in the binary tree using the following rule:

If a complete binary tree with n nodes is represented sequentially,
then for any node with indexij, 1 <j <n,

1) parent(i) is at Li/2] ifi =1.Ifi =1, iis at the root and has no parent.
2) leftChild(i) is at 2i if 2i < n. If 2i > n, then I has no left child.
3) rightChild(i) is at 2i+1 if 2i+1 < n. If 2i+1 > n, then I has no right child.

The sequential representation of the binary tree T in Fig. 4.8(a) appears in Fig. 4.8(b).

Fig. 4.8 Array Representation of Binary Tree

From the Fig.4.8 we see that even though T has only 9 nodes, 14 locations are. required to represent
the tree in the array.

Linked Representation

The array or sequential representation of a binary tree is an efficient way of maintaining the tree
in memory; especially complete or nearly complete binary trees. It wastes space for many other binary
trees. In addition, the representation suffers from the general inadequacies of . sequential
representations. Insertion and deletion of nodes from the middle of a tree require the move me nt of
potentially many nodes to reflect the change in level number of these nodes. These problems can be
overcome easily through the use of linked representation.

In the linked representation of a tree, each node has three fields: leftChild, data and rightChild.
In C this can be defined as:

s{emgl; treenode
int data;
struct treeneds *leftChild, *rightChild;

typedef struct treenode *treePtr;

[leftChild | data [rightChild | /

leftChild rightChild
Fig. 4.11 Tree Node Representation

The pointer root will contain the location of the root R of T. If any subiree is empty, then the
corresponding pointer will contain null value; if the tree T itself is empty, root will contain null value.

Fig. 4.12 Link Representation of Binary Tree (a) The Jree.. . (b) Its link representation

4. Mention different types of binary trees and explain them briefly. State the properties of a
binary tree in detail.

Types of Binary Trees

There are various types of binary trees, and each of these binary tree types has
unique characteristics. Here are each of the binary tree types in detail:

1. Full Binary Tree

It is a special kind of a binary tree that has either zero children or two children. It
means that all the nodes in that binary tree should either have two child nodes of its

parent node or the parent node is itself the leaf node or the external node.

In other words, a full binary tree is a unique binary tree where every node except the
external node has two children. When it holds a single child, such a binary tree will
not be a full binary tree. Here, the quantity of feaf nodes is equal to the number of
internal nodes plus one. The equation is like L=I+1, where L is the number of leaf

nodes, and | is the number of internal nodes.

2. Complete Binary Tree

A complete binary tree is another specific type of binary tree where all the tree levels
are filled entirely with nodes, except the lowest level of the tree. Also, in the last or
the lowest level of this binary tree, every node should possibly reside on the left side.

Here is the structure of a complete binary tree:

AT AT

3. Perfect Binary Tree

A binary tree is said to be ‘perfect’ if all the internal nodes have strictly two children,
and every external or leaf node is at the same level or same depth within a tree. A
perfect binary tree having height ‘h’ has 2h — 1 node. Here is the structure of a

perfect binary tree:

AR

4. Balanced Binary Tree

A binary tree is said to be ‘balanced’ if the tree height is O(logN), where ‘N’ is the
number of nodes. In a balanced binary tree, the height of the left and the right

subtrees of each node should vary by at most one. An AVL Tree and a Red-Black
Tree are some common examples of data structure that can generate a balanced

binary search tree. Here is an example of a balanced binary tree;

5. Degenerate Binary Tree

A binary tree is said to be a degenerate binary tree or pathological binary tree if
every internal node has only a single child. Such trees are similar to a linked list

performance-wise. Here is an example of a degenerate binary tree:

Properties of Binary trees

%
-

1) The ma ximum, number of nodes on level j of a binary tree is 2%, |
Proof: The proof is by induction on .

Induction Base: The root is the only node on level j=1.
Hence, the maximum, number of nodes on level | =1 is 2711 =20 =1,

Induction Hypothesis: Let | be a positive integer greater than 1. Assume that the maximu m number
of nodes on level i-1 is 212,

Induction Step: The maximy m number of nodes on level i-1 is 22 by the induction hypothesis.
Since each node in a binary tree has a maximum degree of 2, the maximu m number of nodes on
level | = Two times the ma ximum, number of nodes on level |

=2. 22 =2,

2) The ma ximum, number of nodes in a binary tree of depth k is 2k -1, k = 1.

The ma ximum, number of nodes in a binary tree of depth k
k

= 2 (maximum number of nodes on level i)
i=1

k
:_z 2l = ok _q

3) Relation between the number of leaf nodes and degree-2 nodes: For any nonempty binary
tree, T, if ng is the number of leaf nodes and n; is the number of nodes of degree 2, then
Ng =nz + 1.

Proof: Let n; be the number of nodes of degree one and n the total number of nodes.
Since all nodes in T are at most of degree two,
n=ng+ny +n: .. (4.1)
If we count the number of branches in a binary tree, every node except the root has a branch leading
to it.
If B is the number of branches, thenn =B + 1.
All branches stem from a node of degree one or two. Thus, B = n; + 2ng,
Therefore, n = B+1 =ny +2n,+1 .. (4.2)

Subtracting (4.2) from (4.1) and rearranging the terms, we get
Ng =n + 1.

Fig. 4.6 Skewed and Complete binary trees
Example: In Fig. 4.6(a), np =1 and n, =0.
In.Fig..4,6(b), no =5 and n, =4.

Full binary tree: A full binary tree of depth k is a binary tree of depth k having 2% - 1 nodes, k = 0.
The ma ximum, number of nodes in a binary tree of depth k = 2% - 1.
Fig. 4.7 shows a full binary tree of depth 4.

Fig. 4.7 Full binary tree of depth 4 with sequential node numbers

We number the nodes in a full binary tree starting with the root on level 1, continuing with the
nodes on level 2, and so on. Nodes on any level are numbered from left to right.

Complete binary tree: A binary tree with n nodes and depth k is complete if and only if its nodes
correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

The height of a complete binary tree with n nodes is rM.I .

n=26-1 ie 2¢=nsiie k = I10g2+1)]

(Fx 71 is the smallest integer > x.)

5. Write the C-routines to traverse the given tree using i)Inorder ii) Pre-order
iii) Post-order

Q"“_.

C function for inorder traversal of a binary tree:

void inorder{treePtr root)
{ ¥ inorder tree traversal */f

if (root)
{

inorder(root->leftChild);
printf(“%d”, root->data);
inorder(root->rightChild);

}
C function for preorder traversal of a binary tree:
void preorder({treePtr root)
{ [* preorder tree traversal */
if (root)

{
printf(“%d"”, root->data);
preorder (root->leftChild);

preorder(root->rightChild);

C function for postorder traversal of a binary tree:

void postorder{treePtr root)

{ /* postorder tree traversal #*/
if (root)

{
postorder(root->leftChild);
printf(“%d”, root-»data);

postorder(root-»>rightChild);

Preorder: ABDGECF
Inorder: GDBEAFC
Postorder: GDEPFCA

6. What is a graph? Write the terminologies used in graph.
GRAPHS
Graph is a non-linear data structure.
Terminology

A graph G consists of two things:
1) A set V of elements called nodes or points or vertices.
2) A set E of edges such that each edge e in E is identified with a unique unordered pair [u,v] of
nodes in V, denoted by e = [u,v].

The parts of the graph are indicated by writing G = (V,E).

* Fig. 5.1 A graph

Suppose e = [u,v].

- Nodes u and v are called the endpoints of e.

- uand v are said to be adjacent nodes or neighbours.

- The degree of a node u, written deg(u), is the number of edges containing u.

- If deg(u) = 0, i.e. if u does not belong to any edge, then u is called an isolated node.

- A path P of length n from a node u to a node v is defined as a sequence of n+1 nodes.
P = (VOI Vi, V2, .y Vﬂ)
such that u=vg; vi is adjacent to v;fori =1, 2, ..., n; and v, = v.

- The path P is said to be closed if vg = v,.

- The path P is said to be simple if all the nodes are distinct, with the exception that vo may equal v,;
i.e. P is simple if the nodes vg, vy, ..., Vo1 are distinct and the nodes v;, v, ..., v, are distinct.

- A cycle is a closed simple path with length 3 or more.
- A cycle of length k is called a k-cycle.

Example: Fig. 5.1 is a graph with 5 nodes - A, B, C, Dand E, and 7 edges: [A,B], [B,C], [C,D], [D,E],
[AE], [C,E], [AC].

There are two simple paths of length 2 from B to E: (B,A,E) and (B,C,E).
There is only one simple path from B to D of length 2: (B,C,D).

(B,A,D) is not a path since [A,D] is not an edge. There are two 4-cycles in the graph: [A,B,C,E,A] and
[A,C,D,E,A].

Deg(A) = 3, since A belongs to 3 edges.

Deg(C) = 4 and deg(D) = 2.
- A graph Gis said to be connected if there is a path between any two of its nodes.

- If there is a path P from a node u to a node v, then, by eliminating unnecessary edges, one can
obtain a simple path Q from u to v.

Explain matrix and adjacency list representation of graphs with example.

REPRESENTATION OF GRAPHS.

There are two standard ways of maintaining a graph G in the memory of a computer.
1. Sequential Representation of G - by means of its adjacency matrix
2. Linked Representation of G - by means of linked lists of neighbour.

Regardless of the way one maintains a graph G in the memory of a computer, the graph G is
normally input into the computer by its collection of nodes and its collection of edges.
SEQUENTIAL REPRESENTATION OF GRAPHS

Adjacency Matrix

Suppose G is a simple directed graph with m nodes, and suppose the nodes of G have been ordered and
are called vy, va, ..., V. Then the adjacency matrix A = (a;;) of the graph is the m x m matrix defined
as follows:

1if viis adjacent to v;, that is, if there is an edge (vi, vj)
0 otherwise

Such a matrix A, which contains entries of only 0 and 1, is called a bit matrix or a Boolean matrix.
The number of 1's in A is equal to the number of edges in G.

Example: Consider the graph in Fig. 5.6. Suppose the nodes are stored in memary in a linear array
DATA as follows:

DATA: X, Y, Z, W

Assume that the ordering of the nodes in G is as follows: vi =X, va =Y, vi =Z and v4 = W. Find the
adjacency matrix of G.

The adjacency matrix of G is

000 1)
A_lﬂ'!i
1001
0010

The adjacency matrix A of the graph depends on the ordering of the nodes of G; i.e. a different
ordering of the nodes may result in a different adjacency matrix. However, the matrices resulting from
two different orderings are closely related in that one can be obtained from the other by simply
interchanging rows and columns.

Suppose G is an undirected graph, then the adjacency matrix A of G will be a symmetric
matrix i.e. one in which a; = a; for every i and j. This is because each undirected edge [u,v]
corresponds to the two directed edges (u,v) and (v,u).

This matrix representation can be extended to multigraphs. If G is a multigraph, then the
adjacency matrix of G is the m x m matrix A = (a;;) defined by setting a;; equal to the number of edges
from v; to v;.

Consider the powers A, A%, A%, .. of the adjacency matrix A of a graph G. Let
ak(i,j) =the ij entry in the matrix A*.
a; (i,j) = aj; gives the number of paths of length 1 from node v; to node v;.

az(i,j) gives the number of paths of length 2 from node v; to node v;.

LINKED REPRESENTATION OF A GRAPH

The major drawbacks of the sequential representation of a directed graph G with m nodes in memory
are:
1) Sparse graphs with few edges for a given number of vertices result in many zero entries in
adjacency matrix. This wastes space and makes many algorithms less efficient (eg. To find nodes
adjacent to a given node, we have to iterate through the whole row even if there are a few 1s there.

2) It may be difficult to insert and delete nodes in G. This is because the size of A may need to be
changed and the nodes may need to be reordered, so there may be many changes in the matrix A.

3) The adjacency matrix A of the graph depends on the ordering of the nodes of G; i.e. a different
ordering of the nodes may result in a different adjacency matrix.

Accordingly, G is usually represented in memory by a linked representation, also called an
adjacency structure.

Fig. 5.8

Consider the graph G in Fig.5.8(a). The table in Fig.5.8(b) shows each node in G followed by its
adjacency list, which is its list of adjacent nodes, also called its successors or neighbors.

Fig. 5.9

Fig. 5.9 shows a schematic diagram of a linked representation of G in memory. Specifically, the
linked representation will contain two lists (or files), a node list NODE and an edge list EDGE, follows :

1) Node list: Each element in the list NODE will correspond to a node in G, and it will be a record of
the form:

Here NODE will be the name or key value of the node, NEXT will be a pointer to the next node in the list
NODE and ADJ will be a pointer to the first element in the adjacency list of the node, which is maintained
in the list EDGE. The shaded area indicates that there may be other information in the record, such as:

i) the indegree INDEG of the node,

ii) the outdegree OUT DEG of the node,

iii) the STATUS of the node during the execution of an algorithm, and so on.

(Altemnatively, one may assume that NODE is an array of records containing fields such as NAME,

INDEG, OUTDEG, STATUS, ...)

The nodes themselves, as pictured in Fig.5.8, will be organized as a linked list and hence will
have a pointer variable START for the beginning of the list and a pointer variable AVAILN for the list of
available space.

7. i)Construct a binary search tree for inputs i) 22, 14, 18, 50, 9, 15, 7, 6, 12, 32, 25 ii)Construct a
binary tree where preorder and Inorder of a traversal yields the following sequence of nodes.
Inorder: 8,4,10,9,11,2,5,1,6,3,7 Preorder:1,2,4,8,9,10,11,5,3,6,7

8. What is threaded binary tree? Write the rules to construct the threads and explain with
example.

Threaded binary trees

In a linked representation of any binary tree, there are more links than actual pointers i.e. there are
n+1 null links out of 2n total links.

AJ.Perlis and C. Thornton devised threaded binary tree in which they replaced the null links by
pointers called threads to other nodes in the tree.

To construct the threads, use the following rules:

i) If ptr->leftChild is null, replace ptr->leftChild with a pointer to the node that would be visited
before ptr in an inorder traversal i.e. the null is replaced with a po inter to the inorder predecessor
of ptr.

i) If ptr->rightChild is null, replace ptr->rightChild with a pointer to the node that would be
visited after ptr in an inorder traversal i.e. the null is replaced with a pointer to the inorder
successor of ptr.

A threaded binary tree is a binary tree which contains threads i.e. addresses of some nodes which
facilitate move ment in the tree.

Fig. 4.20 Threaded Binary Tree a) Binary tree b) Corresponding Threaded Binary Tree

Fig. 4.20 shows a binary tree and the corresponding binary tree. The threads are shown as
broken lines. This tree has 9 nodes and 10 threads. If we traverse the tree in ingrder, the nodes will be
visited in the order H, D, I, B, E, A, F, C, G. Example: node E has a predecessor thread that points to B
and a successor thread that points to A.

When the tree is represented is memory, two additional fields, leftThread and rightThread are
used to distinguish between threads and normal pointers. Assume that pir is an arbitrary node in a
threaded tree.
If pir- >leftThread = TRUE, then pir- =leftChild contains a thread; otherwise it containsa pointer to the
left child.
Similarly, if ptr- =rightThread = TRUE, then pir- »rightChild contains a thread; otherwise it contains a
pointer to the right child.
This node structure is given by the following C declarations:

struct threadedTree

{

short int leftThread;

struct threadedTree *leftchild;
int data;

struct threadedTree *rightchild;

short int rightThread;

b5
typedef struct threadedTree *threadedPTR;

ig. 4.21 An empty threaded binary tree

10.

Fig. 4.22 Memory representation of threaded tree

Fig..4. 22 gives the memory representation of a threaded tree. The variable root points to
the header node of the tree, while root->leftChild points to the start of the first node of the actual
tree. This is true for all threaded trees. The loose threads point to the head node, root.

Sort the numbers given below using radix sort and insertion sort 345, 654, 924, 123, 567, 472,
555, 808, 911 with appropriate figure.
Solution: 123, 345, 472, 555, 567, 654, 808, 911, 924

What is collision? Explain the different collision resolution techniques, if
K=3,2,9,6,11,13,7,12 and h(k)=2k+3 where M=10. Use division method and Linear probing
to store these values in a hash table.

Hashing in data structure falls into a collision if two keys are assigned the same index number
in the hash table. The collision creates a problem because each index in a hash table is
supposed to store only one value. Hashing in data structure uses several collision resolution
techniques to manage the performance of a hash table.

It is a process of finding an alternate location. The collision resolution technigques can be
named as-

Open Hashing (Separate Chaining)

Closed Hashing (Open Addressing)

Linear Probing

Quadratic Probing

Double Hashing

*@5«@) o4 ©

ca-«-u e

I‘ l|

	Different Hash Functions
	1) Division:

