
Page 1 of 9

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test III – May 2023

Sub: Design and Analysis of Algorithms Sub Code: 22MCA15

Date: 25.05.23 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

(scheme mentioned after the question in bold and italics)

 PART I MARKS
OBE

CO RBT

1 How is branch and bound technique different from backtracking?

2 points of difference for 2 marks

Solve the following knapsack problem. Consider capacity=10.

Item 1 2 3 4

Weight 4 7 5 3

Value 40 42 25 12

Method : 5, Accuracy: 3

[2+8]

CO1 L4

2 Explain with an example what is a non-deterministic algorithm.

Explanation : 3, Example : 2

Given that SAT is a NP-Hard problem, prove that 0/1 knapsack is also NP-

Hard.

Proof : 5 Marks

[5+5]

CO3 L1

3
PART II

Apply LC Branch and Bound approach to solve the assignment problem

where the rows of the matrix represent person a, b, c and d from top to

bottom respectively.

Method : 7, Accuracy : 3

[10]

CO1 L4

4

Explain Monte Carlo algorithm and Las Vegas algorithm with examples

Explanation : 3 marks each and Examples: 2 marks each

[5+5]
CO3 L1

5
PART III

With the help of state space tree, solve the 4-queens problem.

Rules Explanation : 2, Solution : 8

[10]

CO1 L4

6 Solve sum of subset problem using backtracking approach.

S={1,3,4,6} d=7

Method : 7, Accuracy : 3

[10]

CO1 L4

7
PART IV

Solve the below instance of TSP using Dynamic Programming:

Method : 7, Accuracy : 3

[10]

CO1 L4

Page 2 of 9

8

Apply Floyd’s algorithm to find the all-pair shortest path for the given

adjacency matrix

Method : 7, Accuracy: 3

[10]

CO1 L4

9
PART V

Solve single source shortest path problem with vertex a as source.

Method : 7, Accuracy: 3

[10]

CO1 L4

10 Apply mergesort and quicksort algorithms to sort the characters in

“VTUBELAGAVI”

Method : 3 marks each, Accuracy: 2 marks each

[5+5] CO1 L4

Page 3 of 9

DESIGN AND ANALYSIS OF ALGORITHMS – 22MCA15 - IAT 3 SOLUTIONS
1.

Parameter Backtracking Branch and Bound

Approach

Backtracking is used to find all possible

solutions available to a problem. When it

realises that it has made a bad choice, it

undoes the last choice by backing it up. It

searches the state space tree until it has

found a solution for the problem.

Branch-and-Bound is used to solve

optimisation problems. When it realises that it

already has a better optimal solution that the

pre-solution leads to, it abandons that pre-

solution. It completely searches the state space

tree to get optimal solution.

Traversal
Backtracking traverses the state space tree

by DFS(Depth First Search) manner.

Branch-and-Bound traverse the tree in any

manner, DFS or BFS.

Function
Backtracking involves feasibility

function.

Branch-and-Bound involves a bounding

function.

Problems
Backtracking is used for solving Decision

Problem.

Branch-and-Bound is used for solving

Optimisation Problem.

Searching
In backtracking, the state space tree is

searched until the solution is obtained.

In Branch-and-Bound as the optimum solution

may be present any where in the state space

tree, so the tree need to be searched

completely.

Efficiency Backtracking is more efficient. Branch-and-Bound is less efficient.

Applications

Useful in solving N-Queen Problem, Sum

of subset, Hamilton cycle problem, graph

coloring problem

Useful in solving Knapsack

Problem, Travelling Salesman Problem.

Solve
Backtracking can solve almost any

problem. (chess, sudoku, etc).

Branch-and-Bound can not solve almost any

problem.

Used for
Typically backtracking is used to solve

decision problems.

Branch and bound is used to solve optimization

problems.

Nodes
Nodes in stat space tree are explored in

depth first tree.

Nodes in tree may be explored in depth-first or

breadth-first order.

Next move
Next move from current state can lead to

bad choice.
Next move is always towards better solution.

Solution
On successful search of solution in state

space tree, search stops.

Entire state space tree is search in order to find

optimal solution.

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/n-queen-problem-backtracking-3/
https://www.geeksforgeeks.org/subset-sum-backtracking-4/
https://www.geeksforgeeks.org/subset-sum-backtracking-4/
https://www.geeksforgeeks.org/subset-sum-backtracking-4/
https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/traveling-salesman-problem-using-branch-and-bound-2/

Page 4 of 9

2

2. In a deterministic algorithm, for a given particular input, the computer will always produce the same

output going through the same states but in the case of the non-deterministic algorithm, for the same

input, the compiler may produce different output in different runs. In fact, non-deterministic algorithms

can’t solve the problem in polynomial time and can’t determine what is the next step. The non-

deterministic algorithms can show different behaviors for the same input on different execution and there

is a degree of randomness to it.

 A non-deterministic algorithm is one in which the outcome cannot be predicted with certainty, even if the

inputs are known.

 For a particular input the computer will give different outputs on different execution.

 Can’t solve the problem in polynomial time.

 Cannot determine the next step of execution due to more than one path the algorithm can take.

 Operation are not uniquely defined.

 Time complexity of non-deterministic algorithms is often described in terms of expected running time.

 Non-deterministic algorithms may produce different outputs for the same input due to random events or

other factors.

 Non-deterministic algorithms are often used in applications where finding an exact solution is difficult or

impractical, such as in artificial intelligence, machine learning, and optimization problems.

 Examples of non-deterministic algorithms include probabilistic algorithms like Monte Carlo methods,

genetic algorithms, and simulated annealing.

Cook–Levin theorem shows that general CNF-SAT (Boolean satisfiability problem) is NP-complete. To get

to Knapsack, one easy way is to:

1. reduce CNF-SAT to 3-CNF-SAT (i.e., three literals per clause) — this is easy

2. reduce 3-CNF-SAT to SubsetSum — see below for details

3. reduce SubsetSum to Knapsack — again, should be easy enough to do on your own.

For the second step, we need to find a many-one reduction from 3-SAT to SubsetSum — in other words, a

poly-time-computable function that maps each 3-SAT instance to a collection of positive integers + a goal

https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Subset_sum_problem

Page 5 of 9

value in a way that preserves solvability. The construction below is slightly redundant for ease of

explanation.

Suppose your 3-SAT instance has n variables, labeled x0 through xn−1, and m clauses, numbered 0

through m−1. The goal in our SubsetSum instance will be the following number (in base-10):

s=33….33(upto m times)11…11(upto n times)

The general idea is that the individual numbers for the instance will be constructed in such a way that:

 Getting all the 1s at the end of s will correspond to choosing either “true” or “false” (but not both)

for each variable.

 Getting the 3s before them will correspond to having at least one true literal in each clause.

Here is the construction:

 For each positive literal xi we will have one integer ai=10
i
+∑j10

n+j
, where the sum goes over all

clauses that contain this literal.

 For each negative literal ¬xi we will have one integer bi=10
i
+∑j10

n+j
, where the sum goes over all

clauses that contain this literal.

 For each clause j, we will have two separate numbers cj=dj=10
n+j

And that’s the whole instance. So, we translated the 3-SAT instance “here is a list of clauses, is

there a satisfying assignment of truth values?” to the SubsetSum instance “here is a collection of

integers: all the ai,bi,cj,dj is there a subset of this collection with sum s?”.

3.

Page 6 of 9

4. A Las Vegas algorithm is an algorithm which uses randomness, but gives guarantees that the solution

obtained for given problem is correct. It takes the risk with resources used. A quick-sort algorithm is a

simple example of Las-Vegas algorithm. To sort the given array of n numbers quickly we use the quick

sort algorithm. For that we find out central element which is also called as pivot element and each element

is compared with this pivot element. Sorting is done in less time or it requires more time is dependent on

how we select the pivot element. To pick the pivot element randomly we can use Las-Vegas algorithm.
 Let us consider the above example of quick sort algorithm. In this algorithm we choose the pivot element
randomly. But the result of this problem is always a sorted array. A Las-Vegas algorithm is having one restriction
i.e. the solution for the given problem can be found out in finite time. In this algorithm the numbers of possible
solutions arc limited. The actual solution is complex in nature or complicated to calculate but it is easy to verify
the correctness of candidate solution.

These algorithms always produce correct or optimum result. Time complexity of these algorithms is based on a
random value and time complexity is evaluated as expected value. For example, Randomized Quick Sort always
sorts an input array and expected worst case time complexity of Quick Sort is O(nLogn).

The computational algorithms which rely on repeated random sampling to compute their results such algorithm
are called as Monte-Carlo algorithms.
The random algorithm is Monte-carlo algorithms if it can give the wrong answer sometimes.

Whenever the existing deterministic algorithm is fail or it is impossible to compute the solution for given problem
then Monte-Carlo algorithms or methods are used. Monte-carlo methods are best repeated computation of the
random numbers, and that’s why these algorithms are used for solving physical simulation system and
mathematical system.

This Monte-carlo algorithms are specially useful for disordered materials, fluids, cellular structures. In case of
mathematics these method are used to calculate the definite integrals, these integrals are provided with the
complicated boundary conditions for multidimensional integrals. This method is successive one with consideration
of risk analysis when compared to other methods.

The Monte-carlo methods has wider range of applications. It uses in various areas like physical science, Design and
visuals, Finance and business, Telecommunication etc. In general Monte carlo methods are used in mathematics.
By generating random numbers we can solve the various problem. The problems which are complex in nature or
difficult to solve are solved by using Monte-carlo algorithms. Monte carlo integration is the most common
application of Monte-carlo algorithm.

The deterministic algorithm provides a correct solution but it takes long time or its runtime is large. This run-time
can be improved by using the Monte carlo integration algorithms. There are various methods used for integration
by using Monte-carlo methods such as,

i) Direct sampling methods which includes the stratified sampling, recursive
stratified sampling, importance sampling.

ii) Random walk Monte-carlo algorithm which is used to find out the integration for
given problem.
iii) Gibbs sampling.

5.

https://www.geeksforgeeks.org/randomized-algorithms-set-1-introduction-and-analysis/

Page 7 of 9

6.

7.

Page 8 of 9

9.

10.

Page 9 of 9

