
Page 1 of 11

CMR

INSTITUTE OF

TECHNOLOGY
USN

Internal Assessment Test 3 –March 2023

Sub: Data Analytics using Python

Sub

Cod

e:

20MCA31

Date: 13/03//2023 Duration: 90 min’s Max Marks: 50 Sem: III

Bra

nch

:

MCA

Note: Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I
MA

RKS

OBE

CO RBT

1

Explain with an example “The GroupBy object “-- aggregate, filter, transform, and

apply.

OR

10 CO

2
L3

2

How to customize the default plot settings of Matplotlib w.r.t runtime

configuration and stylesheets? Give example.

10

CO

2

L4

3

4

PART II

Write Python code to create an account object with two functions and

constructor.

[Hint :The "deposit" method takes an amount to deposit as an argument, adds

it to the account balance, and prints a message with the new balance. The

"withdraw" method takes an amount to withdraw as an argument, checks if

the account has sufficient funds, and either subtracts the amount from the

account balance or prints an error message. The constructor takes an initial

balance as an argument and initializes the account with that balance.]

OR

Write a class Rectangle containing numeric attributes width and height. This

class should contain another attribute corner which is an instance of another

class Point. Implement following functions –

i) function to print corner point as an ordered-pair

ii) function find_center() to compute center point of the rectangle

iii) function resize() to modify the size of rectangle

PART III

10

10

CO

3

L4

Page 2 of 11

CO

1

L2

5.

6

Discuss any five methods to handle the missing data with python code

Elaborate on Seaborn versus Matplotlib with suitable examples

OR

Discuss any 10 built in String methods with an example?

Explain Reshape and Pivot operations with example

PART IV

10

10

CO

3

CO

3

L1

L3

7

8

Write a python program to demonstrate data visualization for Line Plot,

Histogram, heatmap, Boxplot, and Distribution Plots

OR
Write a Pandas program to create a data frame with the test data , split the

dataframe by school code and get mean, min, and max value of i) age ii) weight

for each school.

Test Data:

 school class name age height weight

S1 s001 V Ram 12 173 35

S2 s002 V Kiran 12 192 32

S3 s003 VI Ryan 13 186 33

S4 s001 VI Bhim 13 167 30

S5 s002 VI Sita 14 151 31

S6 s004 V Bhavana 12 159 32

PART V

10

10

CO

3

CO

3

L3

L2

9.

10

 Write python code for the following using Pandas:

I. read from and write into CSV

II. read from and write into JSON

OR

10

10

CO3

CO3

L2

L2

Write python code to interact with database and perform the following task

I. Create table

II. Insert 3 record into table

III. Display all records

Page 3 of 11

SOLUTION

1. Explain with an example “The GroupBy object “-- aggregate, filter, transform, and apply

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if it's a collection of DataFrames, and it does the

difficult things under the hood. Let's see some examples using the Planets data.

Perhaps the most important operations made available by a GroupBy are aggregate, filter, transform, and apply. We'll discuss each of these

more fully in "Aggregate, Filter, Transform, Apply", but before that let's introduce some of the other functionality that can be used with the

basic GroupBy operation.

Aggregate, filter, transform, apply

The preceding discussion focused on aggregation for the combine operation, but there are more options available. In particular, GroupBy objects

have aggregate(), filter(), transform(), and apply() methods that efficiently implement a variety of useful operations before combining the

grouped data.

For the purpose of the following subsections, we'll use this DataFrame:

Code

rng = np.random.RandomState(0)

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],

 'data1': range(6),

 'data2': rng.randint(0, 10, 6)},

 columns = ['key', 'data1', 'data2'])

df

Aggregation

The aggregate() method allows for even more flexibility. It can take a string, a function, or a list thereof, and compute all the

aggregates at once. Here is a quick example combining all these:

http://localhost:8888/notebooks/Desktop/21-22/Data%20Analystics%20Lab/VR-PPT/Pivot/Aggregation-and-Grouping-Vr.ipynb#Aggregate,-Filter,-Transform,-Apply

Page 4 of 11

2. How to customize the default plot settings of Matplotlib w.r.t runtime configuration and stylesheets? Give

example.

a. Each time Matplotlib loads, it defines a runtime configuration (rc) containing the default

styles for every plot element we create.

b. We can adjust this configuration at any time using the plt.rc convenience routine.
c. To modify the rc parameters, we’ll start by saving a copy of the current

rcParams
dictionary, so we can easily reset these changes in the current session:

IPython_default = plt.rcParams.copy()

d. Now we can use the plt.rc function to change some of these settings:

Page 5 of 11

3. Write Python code to create an account object with two functions and constructor.

[Hint :The "deposit" method takes an amount to deposit as an argument, adds it to the account balance, and

prints a message with the new balance. The "withdraw" method takes an amount to withdraw as an

argument, checks if the account has sufficient funds, and either subtracts the amount from the account

balance or prints an error message. The constructor takes an initial balance as an argument and initializes the

account with that balance.]

class Account:

 def __init__(self, initial_balance):

 self.balance = initial_balance

 def deposit(self, amount):

 self.balance += amount

 print(f"Deposit of {amount} successful. New balance: {self.balance}")

 def withdraw(self, amount):

 if self.balance >= amount:

 self.balance -= amount

 print(f"Withdrawal of {amount} successful. New balance: {self.balance}")

 else:

 print(f"Error: Insufficient balance. Cannot withdraw {amount}. Current balance: {self.balance}")

create account with initial balance of 1000

acct = Account(1000)

deposit 500

acct.deposit(500)

withdraw 200

acct.withdraw(200)

4. Write a class Rectangle containing numeric attributes width and height. This class should contain another

attribute corner which is an instance of another class Point. Implement following functions –

Page 6 of 11

i) function to print corner point as an ordered-pair

ii) function find_center() to compute center point of the rectangle

iii) function resize() to modify the size of rectangle

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __str__(self):

 return f"({self.x}, {self.y})"

class Rectangle:

 def __init__(self, width, height, x, y):

 self.width = width

 self.height = height

 self.corner = Point(x, y)

 def __str__(self):

 return f"Rectangle with width {self.width} and height {self.height} at {self.corner}"

 def find_center(self):

 x = self.corner.x + (self.width / 2)

 y = self.corner.y + (self.height / 2)

 return Point(x, y)

 def resize(self, width, height):

 self.width = width

 self.height = height

def print_corner(self):

 print(self.corner)

create a rectangle with width 5, height 3, and corner at (0, 0)

r = Rectangle(5, 3, 0, 0)

print the rectangle's corner

r.print_corner()

compute and print the center of the rectangle

center = r.find_center()

print(f"Center of rectangle: {center}")

resize the rectangle to have width 7 and height 4

r.resize(7, 4)

print the rectangle's new dimensions and corner

print(r)

r.print_corner()

output:

(0, 0)

Center of rectangle: (2.5, 1.5)

Rectangle with width 7 and height 4 at (0, 0)

(0, 0)

5. Discuss any five methods to handle the missing data with python code

Elaborate on Seaborn versus Matplotlib with suitable examples.

i) The isnull() method returns a DataFrame object where all the values are replaced with a Boolean value True for

NULL values, and otherwise False.

dataframe.isnull()

ii) notnull is a pandas function that will examine one or multiple values to validate that they are not null. In Python,

null values are reflected as NaN (not a number) or None to signify no data present. . notnull will return False if either

NaN or None is detected. If these values are not present, it will return True.

Page 7 of 11

iii) The dropna() method removes the rows that contains NULL values.

iv) The fillna() method replaces the NULL values with a specified value.

The fillna() method returns a new DataFrame object unless the inplace parameter is set to True, in that case the fillna()

method does the replacing in the original DataFrame instead.

v). ‘The ffill() method replaces the NULL values with the value from the previous row (or previous column, if the axis parameter is

set to 'columns').

Seaborn library is basically based on Matplotlib. Here is a detailed comparison between the two:
 Seaborn Matplotlib

Functionality

Seaborn, on the other hand, provides a variety of

visualization patterns. It uses fewer syntax and has

easily interesting default themes. It specializes in

statistics visualization and is used if one has to

summarize data in visualizations and also show the

distribution in the data.

Matplotlib is mainly deployed for basic

plotting. Visualization using Matplotlib

generally consists of bars, pies, lines,

scatter plots and so on.

Handling Multiple

Figures

Seaborn automates the creation of multiple figures.

This sometimes leads to OOM (out of memory)

issues.

Matplotlib has multiple figures can be

opened, but need to be closed explicitly.

plt.close() only closes the current figure.

plt.close(‘all’) would close them all.

Visualization

Seaborn is more integrated for working with

Pandas data frames. It extends the Matplotlib

library for creating beautiful graphics with

Python using a more straightforward set of

methods.

Matplotlib is a graphics package for data

visualization in Python. It is well

integrated with NumPy and Pandas. The

pyplot module mirrors the MATLAB

plotting commands closely. Hence,

MATLAB users can easily transit to

plotting with Python.

Data frames and

Arrays

Seaborn works with the dataset as a whole and is

much more intuitive than Matplotlib. For Seaborn,

replot() is the entry API with ‘kind’ parameter to

specify the type of plot which could be line, bar, or

many of the other types. Seaborn is not stateful.

Hence, plot() would require passing the object.

Matplotlib works with data frames and

arrays. It has different stateful APIs for

plotting. The figures and aces are

represented by the object and therefore

plot() like calls without parameters

suffices, without having to manage

parameters.

Flexibility Seaborn avoids a ton of boilerplate by providing

default themes which are commonly used.

Matplotlib is highly

customizable and powerful.

Use Cases

Seaborn is for more specific use cases. Also, it is

Matplotlib under the hood. It is specially meant for

statistical plotting.

Pandas uses Matplotlib. It is a neat

 wrapper around Matplotlib.

6. Discuss any 10 built in String methods with an example? Explain Reshape and Pivot operations with example.

The various String methods are:

1. lower(): Converts all uppercase characters in a string into lowercase

Syntax: string.lower()

txt = "Hello my FRIENDS"

x = txt.lower()

print(x)

O/P : hello my friends

2. upper(): Converts all lowercase characters in a string into uppercase

Syntax: string.upper()

txt = "Hello my FRIENDS"

x = txt.lower()

print(x)

O/P : HELLO MY FRIENDS

Page 8 of 11

3. swapcase(): Swap the cases of all characters in a string
Syntax: string_name.swapcase()
txt= "HelloMyNameIsPETER"

x=txt.swapcase()

print(x)

O/P : hELLOmYnAMEiSpeter
4. Capitalize():Converts the first character of the string to a capital (uppercase) letter

Syntax: string_name.capitalize()
txt= "hello,andwelcometomyworld."

x=txt.capitalize()

print (x)

O/P: Hello,andwelcometomyworld
5. count():Returns the number of occurrences of a substring in the string.

Syntax: string.count(value, start, end)

txt= "Iloveapples

txt.count("apple")

print(x)

O/P: 1

6. Replace():Replaces all occurrences of a substring with another substring

Syntax: string.replace(oldvalue, newvalue, count)
txt= "Ilikebananas"

x=txt.replace("bananas", "apples")

print(x)

O/P: Ilikeapples
7. Endswith():Returns “True” if a string ends with the given suffix

Syntax: string.endswith(value, start, end)

txt= "Hello,welcometomyworld."

x=txt.endswith(".")

print(x)

O/P: True
8. Isalnum():Checks whether all the characters in a given string is alphanumeric or not

Syntax: string.isalnum()

txt= "Company12"

x=txt.isalnum()

print(x)

O/P: True
9. Isalpha():Returns “True” if all characters in the string are alphabets

Syntax: string.isalpha()
txt= "CompanyX"

x=txt.isalpha()

print(x)

O/P- True
10. Isdigit():Returns “True” if all characters in the string are digits

Syntax: string.isdigit()

Ex.

txt=”5000”

x=txt.isdigit()

print(x)

O/P- False

A pivot table is a similar operation that is commonly seen in spreadsheets and other programs that operate on tabular data.

Page 9 of 11

The pivot table takes simple column-wise data as input, and groups the entries into a two-dimensional table that provides a

multidimensional summarization of the data.

The difference between pivot tables and GroupBy : pivot tables as essentially a multidimensional version of GroupBy aggregation.

That is, you split-apply-combine, but both the split and the combine happen across not a one-dimensional index, but across a two-

dimensional grid.

Pivot Table Syntax

Here is the equivalent to the preceding operation using the pivot_table method of DataFrames:

his is eminently more readable than the groupby approach, and produces the same result. As you might expect of an early 20th-

century transatlantic cruise, the survival gradient favors both women and higher classes. First-class women survived with near

certainty (hi, Rose!), while only one in ten third-class men survived (sorry, Jack!).

Multi-level pivot tables

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple levels, and via a number of options. For example,

we might be interested in looking at age as a third dimension. We'll bin the age using the pd.cut function:

7. Write a python program to demonstrate data visualization for Line Plot, Histogram, heatmap, Boxplot, and

Distribution Plots

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

cars_data = pd.read_csv('Toyota.csv', index_col=0,na_values=["??","????"])

fig, ax = plt.subplots()

ax.plot(cars_data['Age'],cars_data['Price'],c='red')

ax.hist(cars_data['Age'],cars_data['Price'],c='red')

sns.heatmap(cars_data['Age'],cars_data['Price'],c='red')

sns.boxplot(cars_data['Fuel Type’])

sns.distplot(cars_data['Age'])

Page 10 of 11

8. Write a Pandas program to create a data frame with the test data , split the dataframe by school code and get

mean, min, and max value of i) age ii) weight for each school.

Test Data:

 school class name age height weight

S1 s001 V Ram 12 173 35

S2 s002 V Kiran 12 192 32

S3 s003 VI Ryan 13 186 33

S4 s001 VI Bhim 13 167 30

S5 s002 VI Sita 14 151 31

S6 s004 V Bhavana 12 159 32

Ans

import pandas as pd

create test data frame

data = {

 'name': ['Ram','Kiran','Ryan','Bhim','Sita','Bhavana'],

 'age': [12,12,13,13,14,12],

 'weight': [35,32,33,30,31,32],

 'height' : [173,192,186,167,151,159]

 'school_code': ['s001','s002','s003','s001','s002','s004']

 's_id' : ['S1','S2','S3','S4','S5','S6']

}

df = pd.DataFrame(data)

split data frame by school code

groups = df.groupby('school_code')

get mean, min, and max values of age and weight for each school

for name, group in groups:

 print(f"School {name}:")

 print(f"Mean age: {group['age'].mean()}")

 print(f"Minimum age: {group['age'].min()}")

 print(f"Maximum age: {group['age'].max()}")

 print(f"Mean weight: {group['weight'].mean()}")

 print(f"Minimum weight: {group['weight'].min()}")

 print(f"Maximum weight: {group['weight'].max()}")

 print()

9. Write python code for the following using Pandas:
I. read from and write into CSV

II. read from and write into JSON

import pandas as pd

read from CSV file

df_csv = pd.read_csv('example.csv')

write into CSV file

df_csv.to_csv('example_output.csv', index=False)

read from JSON file

df_json = pd.read_json('example.json')

write into JSON file

df_json.to_json('example_output.json', orient='records')

10. Write python code to interact with database and perform the following task

I. Create table

II. Insert 3 records into table

III. Display all records

IV. ORDER BY statement to sort the result n ascending order.

Page 11 of 11

V. Update existing records.

import sqlite3

connect to database

conn = sqlite3.connect('example.db')

create table

conn.execute('''CREATE TABLE IF NOT EXISTS example_table

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 EMAIL TEXT NOT NULL);''')

insert 3 records into table

conn.execute("INSERT INTO example_table (ID, NAME, AGE, EMAIL) \

 VALUES (1, 'Alice', 25, 'alice@example.com')")

conn.execute("INSERT INTO example_table (ID, NAME, AGE, EMAIL) \

 VALUES (2, 'Bob', 30, 'bob@example.com')")

conn.execute("INSERT INTO example_table (ID, NAME, AGE, EMAIL) \

 VALUES (3, 'Charlie', 35, 'charlie@example.com')")

commit changes

conn.commit()

display all records

cursor = conn.execute("SELECT * FROM example_table")

for row in cursor:

 print(f"ID = {row[0]}, NAME = {row[1]}, AGE = {row[2]}, EMAIL = {row[3]}")

close database connection

conn.close()

#Order By

cursor = conn.execute("SELECT * FROM example_table ORDER BY NAME”)

conn.commit()

 #Update

cursor = conn.execute("UPDATE example_table SET AGE = 40 WHERE AGE=35”)

