USN					

Internal Assessment Test I – January 2023

						Janaan	<u>, </u>			
Sub:	Engineering Mathematics-I Sub Code: 22MATS11 / 22MA							TE11		
Date:	19/01/2023 Duration: 90 mins Max Marks: 50 Sem / Sec: I / I to P (CHE of							CYCLE) OBE		BE
	Question 1 is compulsory and answer any SIX questions from the rest.								CO	RBT
1.	With usual no	tations prov		the curve $r = f$ $\frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$				[08]	CO1	L3
2.	Find the angle between the curves, $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$.								CO1	L3
3.	Find the pedal equation of the curve $r^2 = a^2 sec 2\theta$								CO1	L3
4.	Find the rank o	of the matrix	$: A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1			[07]	CO4	L3

USN					

Internal Assessment Test I – January 2023

		<u> </u>	iternai As	sessment i	est	i – Januar	y 2023			
Sub:	Engineering M	Engineering Mathematics-I Sub Code: 22MATS11 / 2								
Date:	19/01/2023	Duration:	90 mins	Max Marks:	50	Sem / Sec:	I / I to P (CHE C	CYCLE)	О	BE
	Question 1 is compulsory and answer any SIX questions from the rest.								CO	RBT
1.	With usual no	tations prov		he curve $r = f$				[08]	CO1	L3
	$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$									
2.	2. Find the angle between the curves, $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$.								CO1	L3
	Find the pedal equation of the curve $r^2 = a^2 sec 2\theta$								CO1	L3
4.	Find the rank of the matrix: $A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$							[07]	CO4	L3

5.	Investigate the values of λ and μ such that the following system of equations may have	[07]	CO4	L3
	a) Unique solutions b) Infinite solutions c) no solutions			
	x + y + z = 6			
	x + 2y + 5z = 10			
	$2x + 3y + \lambda z = \mu$			
	Find the values of x, y and z by applying Gauss–Jordan Method:		CO4	L3
6.	x + 2y + z = 3	[07]		
	2x + 3y + 3z = 10			
	3x - y + 2z = 13			
7.	Employ Gauss–Seidel method to solve.	[07]	CO4	L3
	5x + 2y + z = 12			
	x + 4y + 2z = 15			
	x + 2y + 5z = 20			
	Perform 3 iterations by taking initial approximation to the solution as (1, 0, 3)			
	Find the numerically largest eigenvalue and the corresponding eigenvector of the matrix		CO4	L3
8.		[07]		
	/ 4 1 −1 \			
	$A = \begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ 2 & 1 & 5 \end{pmatrix}$			
	\-2 1 5/			
	by Rayleigh power method taking the initial vector as $[1, 0.8, -0.8]^T$ (perform 4 iterations).			

5.	Investigate the values of λ and μ such that the following system of equations may have	[07]	CO4	L3
	b) Unique solutions b) Infinite solutions c) no solutions			
	x + y + z = 6			
	x + 2y + 5z = 10			
	$2x + 3y + \lambda z = \mu$			
	Find the values of x, y and z by applying Gauss–Jordan Method:		CO4	L3
6.	x + 2y + z = 3	[07]		
	2x + 3y + 3z = 10			
	3x - y + 2z = 13			
7.	Employ Gauss–Seidel method to solve.	[07]	CO4	L3
	5x + 2y + z = 12			
	x + 4y + 2z = 15			
	x + 2y + 5z = 20			
	Perform 3 iterations by taking initial approximation to the solution as $(1, 0, 3)$			
	Find the numerically largest eigenvalue and the corresponding eigenvector of the matrix		CO4	L3
8.		[07]		
	$\begin{pmatrix} 4 & 1 & -1 \\ 2 & 2 & 4 \end{pmatrix}$			
	$A = \begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ 2 & 1 & 5 \end{pmatrix}$			
	\-2 1 5/			
	by Rayleigh power method taking the initial vector as $[1, 0.8, -0.8]^T$ (perform 4 iterations).			
	by reastering power method taking the initial vector as [1, 0.0, 0.0] (perform 4 iterations).		<u> </u>	

IAT - 1

Proof:

Take the initial line OL

Let p(8,0) be any point on the curve. r = f(0)such that OP = x i.e., the radius vector.

and the x-axis.

Let the angle between the radius vector and tangent be Φ .

Draw a tangent to the curve such that the

tangent is perpendicular to the line ON.

ONIPN => LPNO=90°.

Now, In DOPN,

$$\sin \phi = P$$

Squaring eq. (1) we get, $P^2 = \Lambda^2 \sin^2 \varphi$

Refri Reciprocate the above egr. we get.

Sin 0 = <u>Perpendicules</u> typotenuse

$$\frac{1}{p^2} = \frac{1}{R^2} \cos c^2 \phi$$

$$\frac{1}{p^2} = \frac{1}{R^2} \left(1 + \cot^2 \phi \right)$$

$$\begin{array}{lll}
\rho_0, & \frac{1}{p^2} = \frac{1}{\Lambda^2} \left(1 + \left(\frac{1}{\Lambda} \cdot \frac{dx}{d\theta} \right)^2 \right) \\
& \frac{1}{p^2} = \frac{1}{\Lambda^2} + \frac{1}{\Lambda^2} \left(\frac{1}{\Lambda^2} \left(\frac{dx}{d\theta} \right)^2 \right)
\end{array}$$

$$\Rightarrow \frac{1}{\rho^2} = \frac{1}{h^2} + \frac{1}{h^2} \left(\frac{ds}{d\theta}\right)^2$$

$$\gamma^2 \neq \sin 20 = 4$$
 and

&.

Taking log on both sides,

 $\log(R^2 \sin 20) = \log(4)$

2 log x = + log sin 20 = log 4

Differentiating on both sides,

$$\frac{2}{3} \cdot \frac{ds}{d\theta} + \frac{1}{\sin 2\theta} \cdot \cos 2\theta \cdot 2 = 0$$

$$\frac{\cancel{x} \cdot 1}{\cancel{x} \cdot \cancel{d} 0} = -\cancel{x} \cdot \cot 20$$

we know that, 1 dg 2 colp

$$\Rightarrow$$
 cot ϕ , = -cot 20

$$\phi_1 = -20$$

$$8^2 = 16 \sin 20$$

Taking log on both sides,

2 log 1 = log 16 + log sin 20.

Cosec20 2 1+ Coff

Differentiating w.r.t o on both sides

$$\frac{2\ell \cdot dq}{\sqrt{d0}} = 0 + \frac{1}{\sin 20} \cdot \cos 20 \cdot 2$$

$$\frac{1}{8}\frac{ds}{do} = \cot 20$$

$$\Rightarrow$$
 cot $\phi_2 = \cot 20$

Angle between two curves is = | \$\phi_2 - \phi_1 \| 2 20-(-20) 2 40

Given 92 sin 20 = 4 and 82 = 16 8in 20 2 = 16 8in 20 $\Rightarrow R^2 = \frac{4}{8i29}$

> equating both the equations, 4 = 4 16 sin 20.

$$\sin^2 2\theta = \frac{1}{4}$$

$$\sin^2 2\theta = \frac{1}{2}$$

$$2\theta = \sin^2 \left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$\theta = \frac{\pi}{12}$$

. Angle between two eurnes is $40 = 4 \times \frac{17}{123} = \frac{7}{3}$ $|\phi_2 - \phi_1| = \frac{\pi}{3}$

 $h^2 = a^2 sec 20$ Taking log on both sides, $2\log x = \log a^2 + \log \sec 20$ Differentiating w.r.t o on both sides $\frac{2}{8} \cdot \frac{ds}{do} = 0 + \frac{1}{\sec 20} \cdot (\sec 20 \tan 20) \cdot 2$ 1. de = tan 20

3.

$$\Rightarrow \cot \phi = \tan 2\theta$$

$$\Rightarrow \cot \phi = \cot \left(\frac{\pi}{2} - 2\theta\right)$$

$$\Rightarrow \boxed{\phi = \frac{\pi}{2} - 2\theta} - 0$$

Given

We know that,

$$p = R \sin \phi$$

Hence,

 $p = R \sin \left(\frac{\pi}{2} - 2\theta\right)$
 $p = R \cos 2\theta$
 $p = R \cos 2\theta$

Given
$$\lambda^2 = a^2 \sec 20$$

$$\frac{\lambda^2}{a^2} = \sec 20$$

$$\Rightarrow \cos 20 = \frac{a^2}{\lambda^2}$$

Substitute (cos 20) value in eq. (2), we get

$$p = \Re\left(\frac{\alpha^2}{\Re^2}\right)$$

$$= \frac{1}{2} \frac{1$$

$$\frac{3}{2x+3y} + \lambda Z = \mu$$

$$R_2 \rightarrow R_2 - R_1$$
, $R_3 \rightarrow R_3 - 2R_1$

$$R_3 \rightarrow R_3 - R_2$$

for unique solution,
$$f(A) = P(A:B) = A = n$$

$$A = 3$$

For rank to be 3,

a)

$$\lambda - 6 \neq 0$$
 $\lambda \neq 6$ and μ can have any value

b) For infinite solution,

For this condition to satisfy,

$$\lambda - 6 = 0$$
 and $\mu - 16 \neq 0$

For no solution,

For this condition to satisfy,

$$\lambda - 6 = 0$$
 and $\mu - 16 \neq 0$

Gauss - Seidel.

$$5x + 2y + Z = 12$$

$$x + 4y + 2z = 15$$

$$x + 2y + 5z = 20$$

Since the given equations are diagonally dominant, we write the equations in teems of x, y, z.

$$\chi = \frac{1}{5} \left[12 - 2y - z \right]$$

$$y^{2} = \frac{1}{4} [15 - \chi - 2z]$$

$$Z = \frac{1}{5} \left[20 - \chi - 2y \right]$$

Let us assume,
$$x=1$$
, $y=0$, $z=3$

$$y^{(1)} = \frac{1}{5} \left[12 - 2(0) - 3 \right] = 1.8$$

$$y^{(1)} = \frac{1}{4} \left[15 - 1.8 - 2(3) \right] = 1.8$$

$$z^{(1)} = \frac{1}{4} \left[20 - 1.8 - 2(1.8) \right] = 2.92$$

$$\chi^{(2)} = \frac{1}{5} \left[12 - 2(1.8) - 2.92 \right] = 1.096$$

$$y^{(2)} = \frac{1}{4} \left[15 - 1.096 - 2(2.92) \right] = 2.016$$

$$Z^{(2)} = \frac{1}{5} \left[20 - 1.096 - 2(2.016) \right] = 2.9744$$

3rd iteration

$$\alpha^{(3)} = \frac{1}{5} \left[12 - 2(2.016) - 2.9744 \right] = 0.9987$$

$$y^{(3)} = \frac{1}{4} \left[15 - 0.9987 - 2 \left(2.9744 \right) \right] = 2.0131$$

$$Z^{(3)} = \frac{1}{5} \left[20 - 0.9987 - 2(2.0131) \right] = 2.9950$$

Hence, the solution to the given equations is

$$x = 0.9987$$
, $y = 2.0131$, $z = 2.9950$

8.
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix} \times = \begin{bmatrix} 1 \\ 0.8 \\ -0.8 \end{bmatrix}$$

$$A \times^{(0)} = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ -0.8 \end{bmatrix} = \begin{bmatrix} 5.6 \\ 5.2 \\ -5.2 \end{bmatrix} = 5.6 \begin{bmatrix} 1 \\ 0.9235 \\ -0.9285 \end{bmatrix}$$

$$A \times {}^{(1)} = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0.9785 \\ -0.9285 \end{bmatrix} = \begin{bmatrix} 5.857 \\ 5.714 \\ -5.714 \end{bmatrix} = 5.857 \begin{bmatrix} 1 \\ 0.9755 \\ -0.9755 \end{bmatrix}$$

$$A X^{(2)} = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0.9755 \\ -0.9755 \end{bmatrix} = \begin{bmatrix} 5.951 \\ 5.902 \\ -5.902 \end{bmatrix} = 5.951 \begin{bmatrix} 1 \\ 0.9917 \\ -0.9917 \end{bmatrix}$$

$$AX^{(3)} = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0.9917 \\ -0.9917 \end{bmatrix} = \begin{bmatrix} 5.9834 \\ 5.9668 \\ -5.9668 \end{bmatrix} = 5.9834 \begin{bmatrix} 0.9972 \\ -0.9972 \end{bmatrix}$$

$$AX^{(4)} = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0.9972 \\ -0.9972 \end{bmatrix} z \begin{bmatrix} 5.9944 \\ 5.9888 \\ -5.9888 \end{bmatrix} = 5.9944 \begin{bmatrix} 0.999 \\ -0.999 \end{bmatrix}$$

6.
$$x + 2y + z = 3$$
 $2x + 3y + 3z = 10$
 $2x + 3y + 3z = 10$
 $8x - y + 2z = 13$
 $8x - y + 2z = 14$
 $8x - y +$

Hence the required solution is n=2, y=-1, y=2