CMD			1											
CMR INSTITUTE (Œ		TIGNI											2/2
			USN _											CAAD
TECHNOLOG	JI		Internal A	1	ont T	'aat	т							LIVIK
	1		mternai <i>F</i>	Assesin	em 1	est -	-1					1		
Sub:	Introduction to	Electrical E	Engineeri	ng						Co	de:	22ES	C142	
Date:	19/01/2023	Duration:	90 mins	I	Ma Mark	151	0	Sem :	1st sem	Br h:	anc	CS/E0	C	
		Ansv	ver any I	FIVE F	ULI	Qu	esti	ons						
													СО	RB T
The The dowing the term	explain Ohm's law: natic of p points on between the perature of = RG constant of resistance of reparental I Gran condu	otential a a conductor on in con the conduct the condu	liffcuence n to not ant, clon do ity eton.	the provinces n't	between ded chang	t (I)						[4]	CO1	L1

dimitations - OHM'S LAW 1) It cannot be applied to non-linear devices. like diodus, zener diodus, transistoms, voltage segulator etc. 2) Ohm's law is applicable as long as tempe- rature and other physical parameters remains rature and other physical parameters remains constant 3) It cannot be applied to complicated onto thoring more no of brancher and emp sources. thoring more no of brancher conductors 4) Not suitable for non-metallic conductors time silicon carbide, graphite etc.			
b) Three 60W 240V lamps are connected across a 240V power supply as shown in the figure. Calculate the i) Potential drop across each lamp ii) Total power dissipated in the lamp. Lamp1 Lamp2 Lamp2 Lamp3	[6]	CO1	L3

		ı	
KYL @ loop 1:- $10 - 3i_1 - 4(i_1 - i_2) + 3 = 0$ $10 - 3i_1 - 4i_1 + 4i_2 + 3 = 0$ $10 - 7i_1 + 4i_2 + 3 = 0$ $-7i_1 + 4i_2 + 0i_3 = -13$ -13 $-7i_1 + 4i_2 + 0i_3 = -13$ $-5i_2 - 5 - 6(i_2 - i_3) + 30 - 3 - 4(i_2 - i_1) = 0$ $-5i_2 - 5 - 6i_2 + 6i_3 + 37 - 4i_2 + 4i_1 = 0$ $-5i_2 - 5 - 6i_2 + 6i_3 + 37 - 4i_2 + 4i_1 = 0$			
$-6i_{2}-5-0i_{2}$ $-7i_{3}-16i_{2}+6i_{3}=-22$ $-7i_{3}+31-30-6(i_{3}-i_{2})=0.$ $-7i_{3}+1-6i_{3}+6i_{2}=0.$ $-7i_{3}+1-6i_{3}+6i_{2}=0.$ $-7i_{3}+1-6i_{3}+6i_{2}=0.$ $-3.574; i_{2}=3.014; i_{3}=1.464.$			
b) For the given circuit calculate V_{xy} $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[4]	CO1	L3

	1		,
The number of complete wave repetitions occurring in a unit time is referred as freque			
And 'f' is the denotion used for it. Consider the waveform representation given below	W.		
Amplitude: The amplitude of a periodic variable is a measure of its change in a single period.	The		
amplitude of a non-periodic signal is its magnitude compared with a reference value.			
Phase:			
The phase of an alternating quantity is defined as the divisional part of a cycle through	ough		
which the quantity moves forward from a selected origin. When the two quantities l	_		
the same frequency, and their maximum and minimum point achieve at the same pe			
then the quantities are said to have in the same phase.			
Phase Difference:			
The phase difference between the two electrical quantities is defined as the angular particles are the supplied to the control of the phase difference between the two electrical quantities is defined as the angular particles.			
difference between the maximum possible value of the two alternating quantities ha	ving		
the same frequency.			
400 1 1 1 1 1 1 1			
4 a) For the given circuit, calculate current through all the branches			
80A			
0.2Ω 0.2Ω			
60A			
	[6]		1.2
0.1Ω 0.1Ω	[5]		L3
70A			
60A		CO1	
0.1Ω 0.3Ω			
120A			
<u> </u>			

	200 03 00 000 Let us assume current through			
	branch ab, be I (1).			
	on one of one branches are consisten as follows			
	the current through as follows			
	(2-80) 1204 branches are warned			
	Tab = Iti, Ibc = (I-60) A; Icd = I(A); Ide = (I-100) A			
	Ief = (I-10) A ; Ifa = (I-80) A.			
	Ief = (I-FD) A; Ifa = (I-80) A. Apply KYL for the loop abcdefa, Apply KYL for the loop abcdefa, -0.27 - 0.1 (I-60) - 0.3T - 0.1 (I-120) - 0.1 (I-50)			
	Apply RVL 700 - 0.1 (I-120) - 0.1 (I-10)			
	-0.21 - 0.1 (I-60) - 0.3.			
	- 0.2 (I-80) =0.			
	- 0.2 (I-90) =0. -0.2I - 0.1I +6# - 0.3I - 0.1I +12 -0.1I +5-0.2I+16=			
	I - 39 = 0			
	I = 39 A			
	Iab = 394; $Ibc = 739-60 = -814$; $Icd = 304$			
	Iab = 394; $Ibc = 4 5100Ide = I-120 = 39-120 = -814$; $Ief = -114$;			
	I de = I-120 = 37-120			
	Ifa = -41 A.			
b)	State and explain Kirchhoff's Laws, as applied to D.C. Circuit.		CO1	
	The current or voltage of any circuit branch can also be calculated using Kirchhoff's Law.			
	These laws are valid in AC and DC networks at low frequencies.			
	Kirchhoff's laws are classified into two types:			
	Kirchhoff's Current Law (KCL)			
	Kirchhoff's Voltage Law (KVL)			
	Kirchhoff's Current Law	[5]		L2
	Kirchhoff's current law is also known as Kirchhoff's First law or Kirchhoff's Law of the			
	junction, but the most used term is Kirchhoff's Current Law or KCL. KCL is based on the law of conservation of charge.			
	naw of conservation of charge.			
	Kirchhoff's current law states that the algebraic sum of currents entering a node or a closed			
	boundary equals zero.			

If there are N number of branches connected to a node and it is the current of the nth branch, then mathematically, KCL states,

$$^{N}\sum_{n=1}i_{n}=0$$

Applying KCL to the above node,

$$-i_{1} + i_{2} - i_{3} - i_{4} + i_{5} = 0$$
$$i_{2} + i_{5} = i_{1} + i_{3} + i_{4}$$

Current leaving=current entering

Kirchhoff's Voltage Law

Kirchhoff's Voltage Law is also known as Kirchhoff's Second law or KVL. KVL is based on the law of conservation of energy.

Kirchhoff's Voltage Law:

Kirchhoff's Voltage Law states that the algebraic sum of voltages around a closed path or loop in a circuit equals zero. If there are M number of voltages in a loop and V_m is the m^{th} voltage, then mathematically, KVL can be written as:

$$^{\mathrm{M}}\sum_{\mathrm{n=1}}v_{\mathrm{m}}=0$$

5)
$$I_{1}=155A$$
 I_{2} I_{1} I_{2} I_{2} I_{3} I_{4} I_{4

6a) Define the RMS, average value, form factor and peak factor for a sinusoidal signal.			
Average Value:			
The average of all the instantaneous values of an alternating voltage and currents over one complete cycle is called Average Value . If we consider symmetrical waves like sinusoidal current or voltage waveform, the positive half cycle will be exactly equal to the negative half cycle. Therefore, the average value over a complete cycle will be zero .			
RMS Value:			
That steady current which, when flows through a resistor of known resistance for a given period of time than as a result the same quantity of heat is produced by the alternating current when flows through the same resistor for the same period of time is called R.M.S or effective value of the alternating current.	[5]	CO2	L1
Peak Factor is defined as the ratio of maximum value to the R.M.S value of an alternating quantity. The alternating quantities can be voltage or current. The maximum value is the peak value or the crest value or the amplitude of the voltage or current.			
Form Factor: The ratio of the root mean square value to the average value of an alternating quantity (current or voltage) is called Form Factor. The average of all the instantaneous values of current and voltage over one complete cycle is known as the average value of the alternating quantities.			
b) Derive the expression for impedance in the case of series R-L and R-C circuits with relevant phasor diagrams.			
RL series circuit:			
V_R V_L V_R V_R V_L V_R V_R V_L V_R	[5]	CO2	L2
Where,			
• V _R – voltage across the resistor R			
V _L – voltage across the inductor L			

• V – Total voltage of the circuit

Phasor Diagram of the RL Series Circuit

The phasor diagram of the RL Series circuit is shown below:

In right-angle triangle OAB

 $V_R = I_R$ and $V_L = IX_L$ where $X_L = 2\pi fL$

$$V = \sqrt{(V_R)^2 + (V_L)^2} = \sqrt{(IR)^2 + (IX_L)^2}$$

$$V = I\sqrt{R^2 + X_L^2} \quad \text{or} \quad$$

$$I = L = \frac{V}{Z}$$

$$Z = \sqrt{R^2 + X_L^2}$$

Where,

Z is the total opposition offered to the flow of alternating current by an RL Series circuit and is called impedance of the circuit. It is measured in ohms (Ω) .

RC Series Circuit:

Circuit Globe

Where,

- $\bullet \quad V_R voltage \ across \ the \ resistance \ R$
- V_C voltage across capacitor C
- V total voltage across the RC Series circuit

Phasor Diagram:

Circuit Globe

In right triangle OAB, $V = \sqrt{(V_R)^2 + (V_C)^2} = \sqrt{(IR)^2 + (IX_C)^2}$ $V = I\sqrt{R^2 + X_C^2} \qquad \text{or}$ $I = \frac{V}{\sqrt{R^2 + X_C^2}} = \frac{V}{Z}$ Where, $Z = \sqrt{R^2 + X_C^2}$ Z is the total opposition offered to the flow of alternating current by an RC series circuit and is called impedance of the circuit. It is measured in ohms (Ω).			
7 a) A pure inductive coil allows a current of 10A to flow from a 230V,50Hz supply. Calculate i) X _L ii) L and iii) Power	[4]	CO2	L3

4) b) V = (100+ 160) V =	=> 116.62 130.96			
T = (-5+j(0) A =	> 11.18 /116.56			
o) Impedance Z = V =>	100+ 360			
Σ	- F+ j 10			
= 0.8 - 10.4				
= 10.43 1-85.6				
b) Phase angle $\phi = tan!$	R.	[6]	CO2	I
φ = tan (10.	4			
Ø = -85.60.				
Ø= 85-60				
c) Power factor: cosp =	0.0766			
d) Power = VI cos d =>	116.62×11.18 cos ¢			
= 116.62 × 11.18 ×	4) 50.0			