
USN

Internal Assessment Test 2 – March 2023
Sub
:

Principles of Programming using C
Sub

Code:
22POP1
3

Branc
h:

CSE

Date:
06/02/20

23
Duratio

n:
90 mins

Max
Marks:

50
Sem /
Sec:

I / [All sections] OBE

Answer any FIVE FULL Questions
MA
RK
S

C
O

R
B
T

1 Explain the different types of loops in ‘C’ with syntax and example.
Loops in C programming language are a conditional concept used to
execute a line or block of code consecutively. In C programming, there
are three loops: For Loop, While Loop, and Do While Loop. Loops in C
can also be combined with other control statements such as the Break
statement, Goto statement, and Control statement. These loops can be
used anywhere in the program, in either entry control or exit control
units.

Different Types of Loops

There are 3 different types of Loops in C

● While Loop
● Do While Loop
● For Loop

1. While Loop

In this, the condition is evaluated before processing the loop’s body.
Only the loop’s body is executed if the condition is true. Then the
control goes back to the beginning after completing the loop once. The
statements in the loop will be executed again, and if the condition is
true and checked, this process goes on until the condition becomes
false. The control will go out of the loop if the condition is false. After
completion of the loop, the control will go to the statement immediately
after the loop, and the body can contain more than one statement. The

10
CO

2
L2

https://www.educba.com/software-development/courses/c-sharp-certification-course/?btnz=new-promo-g1

curly braces are not that important if it has only one statement. If the
condition is not true in the while loop, then loop statements won’t get
executed.

Syntax:

while (condition) {
statements;

}

Example:

#include<stdio.h>
#include<conio.h>
int main()
{
int num=1;
while(num<=5)
{
printf("%d\n",num);
num++;
}
return 0;

}

Output:

It will print the numbers from 1 to 5 like below.

2. Do While Loop

In this loop, the statements the loop need to be executed at least once.
After that, it checks the condition. If the condition is true, it will again

have executed the loop; otherwise, it will exit it. It is known as an
exit-controlled loop. It is similar to a while loop, and the condition is
always executed after the body of the loop. The while loop is performed
only when the condition is true, but sometimes the statement must be
conducted at least once, so the do-while loop has to be used. The
difference between while and do-while loop is that in the while loop,
while is written in the beginning, and do-while, the condition is
mentioned at the end and ends with a semicolon (;).

Syntax:

do {
statements

} while (expression);

Example:

#include<stdio.h>
#include<conio.h>
int main()
{
int num=1;
do
{
printf ("%d\n",2*num);
num++;
}
while(num<=5);
return 0;

}

Output:

The output of the above program is:

https://www.educba.com/c-sharp-do-while-loop/

3. For Loop

It executes the set of statements until the time a particular condition is
accomplished. It is known as the Open-ended loop. In For loop, we can
have more than one initialization or increment/decrement, separated
using a comma operator and one condition. For loop is used to
evaluate the initialization part first, checking the condition for true or
false. If the condition is true, it executes the statements of for loop.
After that, it evaluates the increment or decrement condition until the
condition becomes false it repeats the same steps. It will exit the loop
when the condition is false.

Syntax:

for (initial value; condition; incrementation or
decrementation)
{
statements;

}

Example:

#include<stdio.h>
#include<conio.h>
int main()
{
int number;
for(number=1;number<=5;number++)
{
printf("%d\n",number);
}
return 0;

}

Output:

There are nested For loops in which there is the outer For loop and
inner loop. In this nested loop, the inner loop is repeated for the times
for a given condition of outer loop iteration.

for(initialization; condition;
increment/decrement)
{
for(initialization; condition;
increment/decrement)
{
statement ;
}

}

Example:

#include<stdio.h>
#include<conio.h>
void main()
{
int i, j;
for(i = 1; i < 5; i++)
{
printf("\n");
for(j = i; j > 0; j--)
{
printf("%d", j);
}
}

https://www.educba.com/nested-loop-in-javascript/

}

Output:

Other Example:

#include <stdio.h>
#include<conio.h>
int main() {
int i, j;
int table = 2;
int max = 5;
for (i = 1; i <= table; i++) {
for (j = 0; j <= max; j++) {
printf("%d x %d = %d\n", i, j, i*j);
}
printf("\n");

}}

Output:

Control Statements

Some loop control statements need to be used in loops for different
purposes and to achieve the end result. Below are the different
statements that are used:

Break statement

The break statement is used to exit the loop immediately after
executing a particular statement for a specific condition.

Syntax:

While (Condition)
{ Statement 1; statement 2;
If (Condition)
{ break;}

Statement 3; }

Continue Statement

It generally skips the statements according to the condition. It is used
to send the control directly to the condition and to continue the loop
process. For a particular condition, it skips the current loop or
statements and enters into a new loop or condition.

https://www.educba.com/control-statements-in-c/
https://www.educba.com/vb-dot-net-loops/

Syntax:

While (Condition)
{ Statement 1; statement 2;
If (Condition)
{ continue;}

Statement 3; }

Goto statement

It is used to transfer the protocol to a labeled statement.

Example:

#include<stdio.h>
#include<conio.h>
int main()
{
int number;
number=0;
repeat:
printf ("%d\n",number);
number++;
if(number<=5)
goto repeat;
return 0;

}

Output:

2 Explain the switch statement with syntax. Write a program for simple
calculator using switch and explain the same.

#include <stdio.h>

int main() {

char op;
double first, second;
printf("Enter an operator (+, -, *, /): ");
scanf("%c", &op);
printf("Enter two operands: ");
scanf("%lf %lf", &first, &second);

switch (op) {
case '+':
printf("%.1lf + %.1lf = %.1lf", first, second, first + second);
break;
case '-':
printf("%.1lf - %.1lf = %.1lf", first, second, first - second);
break;
case '*':
printf("%.1lf * %.1lf = %.1lf", first, second, first * second);
break;
case '/':
printf("%.1lf / %.1lf = %.1lf", first, second, first / second);
break;
// operator doesn't match any case constant
default:
printf("Error! operator is not correct");

}

return 0;
}

10
CO

2
L2

3 Write a ‘C’ program to find roots of quadratic equation.
include<stdio.h>
include<conio.h>
include<math.h>

10
CO

2
L3

main (){
float a,b,c,r1,r2,d;
printf (“enter the values of a b c”);
scanf (“ %f %f %f”, &a, &b, &c);
d= b*b – 4*a*c;
if (d>0){
r1 = -b+sqrt (d) / (2*a);
r2 = -b-sqrt (d) / (2*a);
printf (“The real roots = %f %f”, r1, r2);

}
else if (d= =0){
r1 = -b/(2*a);
r2 = -b/(2*a);
printf (“roots are equal =%f %f”, r1, r2);

}
else
printf(“Roots are imaginary”);

getch ();

}

4 What is an array? Explain the declaration and initialization of one and two
dimensional arrays with example.

dimensional array
Array is a data structure that is used to store variables that are of similar data types at

contiguous locations. The main advantage of the array is random access and cache

friendliness. There are mainly three types of the array:

● One Dimensional (1D) Array

● Two Dimension (2D) Array

● Multidimensional Array

One Dimensional Array:

● It is a list of the variable of similar data types.

● It allows random access and all the elements can be accessed with the help

of their index.

● The size of the array is fixed.

● For a dynamically sized array, vector can be used in C++.

10
CO

3
L2

https://www.geeksforgeeks.org/introduction-to-arrays/
https://www.geeksforgeeks.org/data-structures/
https://www.geeksforgeeks.org/difference-between-contiguous-and-noncontiguous-memory-allocation/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-array-in-c/
https://www.geeksforgeeks.org/arrays-in-c-cpp/
https://www.geeksforgeeks.org/dynamically-allocate-2d-array-c/
https://www.geeksforgeeks.org/multidimensional-arrays-c-cpp/
https://www.geeksforgeeks.org/arrays-in-c-cpp/
https://www.geeksforgeeks.org/c-data-types/
https://www.geeksforgeeks.org/vector-in-cpp-stl/
https://www.geeksforgeeks.org/c-plus-plus/

● Representation of 1D array:

Two Dimensional Array:

● It is a list of lists of the variable of the same data type.

● It also allows random access and all the elements can be accessed with the

help of their index.

● It can also be seen as a collection of 1D arrays. It is also known as the

Matrix.

● Its dimension can be increased from 2 to 3 and 4 so on.

● They all are referred to as a multi-dimension array.

● The most common multidimensional array is a 2D array.

● Representation of 2 D array:

Difference Table:

https://www.geeksforgeeks.org/multidimensional-arrays-c-cpp/

Basis One Dimension Array Two Dimension Array

Definition
Store a single list of the
element of a similar data
type.

Store a ‘list of lists’ of the
element of a similar data type.

Representation Represent multiple data
items as a list.

Represent multiple data items as
a table consisting of rows and
columns.

Declaration

The declaration varies for
different programming
language:

1. For C++,

datatype

variable_name[ro

w]

2. For Java,

datatype []

variable_name=

new

datatype[row]

The declaration varies for
different programming
language:

1. For C++,

datatype

variable_name[row][

column]

2. For Java,

datatype [][]

variable_name= new

datatype[row][colum

n]

Dimension One Two

Size(bytes)
size of(datatype of the
variable of the array) * size
of the array

size of(datatype of the variable
of the array)* the number of
rows* the number of columns.

Address
calculation.

Address of a[index] is equal
to (base Address+ Size of
each element of array *
index).

Address of a[i][j] can be
calculated in two ways
row-major and column-major

1. Column Major:

Base Address + Size

of each element

(number of

rows(j-lower bound

of the

column)+(i-lower

bound of the rows))

2. Row Major: Base

Address + Size of

each element

(number of

columns(i-lower

bound of the

row)+(j-lower bound

of the column))

Example

int arr[5]; //an array with
one row and five columns
will be created.

{a , b , c , d , e}

int arr[2][5]; //an array with
two rows and five columns will
be created.

a b c d e

f g h i j

Applications of Arrays:

● 2D Arrays are used to implement matrices.

● Arrays can be used to implement various data structures like a heap, stack,

queue, etc.

● They allow random access.

● They are cache-friendly.

5 Explain the use of break and continue statement in loops with example.
The one-token statements continue and break may be used within loops to alter

control flow; continue causes the next iteration of the loop to run immediately,

whereas break terminates the loop and causes execution to resume after the loop.

Both control structures must appear in loops. Both break and continue scope to the

most deeply nested loop, but pass through non-loop statements.

Although these control statements may seem undesirable because of their goto-like

behavior, their judicious use can greatly improve readability by reducing the level of

nesting or eliminating bookkeeping inside loops.

Break Statements

When a break statement is executed, the most deeply nested loop currently being

executed is ended and execution picks up with the next statement after the loop.

For example, consider the following program:

while (1) {
if (n < 0) break;
foo(n);
n = n - 1;

5
CO

2
L2

https://www.geeksforgeeks.org/binary-heap/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/

}

The while~(1) loop is a “forever” loop, because 1 is the true value, so the test always

succeeds. Within the loop, if the value of n is less than 0, the loop terminates,

otherwise it executes foo(n) and then decrements n. The statement above does

exactly the same thing as

while (n >= 0) {
foo(n);
n = n - 1;

}

This case is simply illustrative of the behavior; it is not a case where a break

simplifies the loop.

Continue Statements

The continue statement ends the current operation of the loop and returns to the

condition at the top of the loop. Such loops are typically used to exclude some

values from calculations. For example, we could use the following loop to sum the

positive values in the array x,

real sum;
sum = 0;
for (n in 1:size(x)) {
if (x[n] <= 0) continue;
sum += x[n];

}

Explain the syntax of nested ‘if’ statements. Write a ‘C’ Program to find
largest of three numbers using nested ‘if’ statement.

5
CO

2
L3

6 Write a ‘C’ Program to find the sum of odd numbers ‘n’ natural numbers
using do ‘while’ loop.

5
CO

2
L3

Write a ‘C’ program to search a key element using linear search. 5
CO

3
L3

CI CCI
HOD

