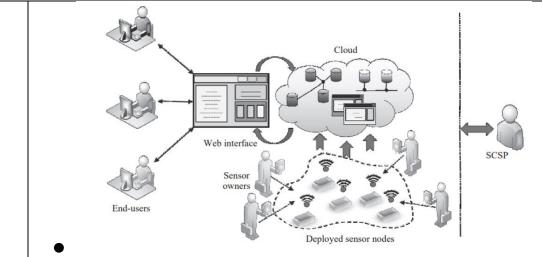

USN				* CORRENTED WI		RIT Ingaluru. Y NAAG
	Internal Assessment Test 2	2 – August 2	023			
Sub:	Internet of Things	Sub Code:	22ETC15H	Branch:		
Date:	07/03/2023 Duration: 90 min's Max Marks: 50	Sem/Sec:	III / A, B, C, D,	E, F and G	OB	E
	Answer any FIVE FULL Questions			MARKS	СО	RB T
	How is collaborative processing different from remote	processing	?	10	CO3	L2
	Solution: Remote Processing :					
	 This is one of the most common processing to IoT solutions. 	pologies in	the present-da	ny		
	 Sensor nodes will sense the data, then forward cloud-based infrastructure for further processing 			ra		
	 Data collected from hundreds and thousands or simultaneously processed in to a single, power 					
	• Due to this					
	• Cost and energy savings is achieved,					
	 Resources can be reused and reallocate 	d				
	• Deployment of smaller and simpler pro	cessing nod	es can be done	e.		
	• This setup provide scalability of solutions.					
	• This topology use up a lot of network bandwid	th and relie	s heavily on th	ne		
	presence of network connectivity between the	sensor node	s and the remo	ote		
	processing infrastructure.					
	Event: Fire Temperature Sensor node Internet	Remote processing				
	sensor		of PANs			
	Collaborative Processing		0117110			
	• This processing topology is useful in a situatio	n				
	• With limited or no network connectivit					
	• No access to a remote infrastructure	5				
	• In such scenarios, the simplest solution is to clu	b together no	earby processi	ng		
	nodes and collaboratively process the data at the	-	• •			
	 This approach reduces latencies(delays) and c network. 	onserves bar	ndwidth of the			
	• This topology can be quite beneficial for appl	ications suc	h as agricultur	re,		
	where data is entered after long intervals (in th	e range of h	ours).			
	• Mesh networks for useful for easy implementa	tion of this t	opology.			


TT			
• If Cheaper cost hardware is used for design then it will increase the density of hardware for an IoT solution.			
• For example, cheaper gas and fire detection solutions would enable users to include much more sensing hardware.			
Memory			
• The memory requirements (both volatile and non-volatile memory) of IoT devices determines the capabilities the device has.			
• Features such as local data processing, data storage, data filtering, data formatting, and a bunch of other features rely heavily on the memory capabilities of devices.			
• Devices with higher memory tend to be costlier.			
Processing power			
• The processing power decides the type of applications the device can be associated with.			
• Applications that handle video and image data require IoT devices with higher processing power as compared to applications requiring simple sensing of the environment.			
I/O rating			
• The input–output (I/O) rating of the processor, is the deciding factor in determining the circuit complexity, energy usage, and requirements for support of various sensing solutions and sensor types.			
• Newer processors have a restricted I/O voltage rating of 3.3 V, as compared to 5 V for the somewhat older processors.			
Add-ons			
• The support of various add-ons for a processor for an IoT device will be			
 Analog to digital conversion (ADC) units 			
• In-built clock circuits			
 Connections to USB and Ethernet 			
 Inbuilt wireless access capabilities 			
 Add-ons support define the robustness and usability of a processor or IoT device in various application scenarios. 			
 add-ons also decides how fast a solution can be developed, for hardware part of the whole IoT application. 			
• Designing of interfacing and integration of systems at the circuit level will			
be difficult but due to add-ons this is possible in later stages and it will make			
processor or device profitable to the users/ developers.			
What are the various decision making approaches chosen for offloading data in IoT?	10	CO3	L2
Solution:			
• Data offloading is divided into three parts:			
 1) offload location (where to offload (move) the processing in the IoT architecture), 			
• 2) offload decision making (how to choose where to			
offload(move) the processing to and by how much),			
 3) offloading considerations (deciding when to offload). 			

Offload decision making		
• The choice of where to offloa	ad and how much to offload decides the	
deployment(working state) o	f an offsite-processing topology.	
• The decision making is done	by considering	
• Data generation rate		
• Network bandwidth		
• Criticality of applicat	ions	
• Processing resource a	vailable at the offload site	
• Some approaches are as follo	ws	
• Naive Approach		
 Bargaining based app 	roach	
• Learning based appro	ach	
Naive Approach		
• This approach is typically a h	hard approach, without too much decision	
making.		
• It is a rule-based approach.		
• In this method data from IoT	devices are offloaded(moved) to the nearest	
location when certain offload	criteria is fulfilled.	
• This approach is never recom	nmended	
 for dense deployment 	s	
 deployments where the 	he data generation rate is high	
 complex to handle data 	ta types(multimedia or hybrid).	
• In this approach Statistical m	easures are used for generating the rules.	
Bargaining based approach		
• This approach is processing-	intensive during the decision making stages.	
• This method gives importance	e's to	
• Network traffic conge	estion	
• Enhancement of servi	ce QoS (quality of service) by considering	
its		
 Parameters su 	ch as	
• Bandw	vidth	
• Latence	ties	
• Bargaining based solutions tr	ry to maximize the QoS by considering	
qualities of parameters.		
• Certain qualities of paramete	rs are reduced, while the others are	
enhanced.		
• This step is done to distribute	e QoS to the entire system.	
• Game theory is a common ex	ample of the bargaining based approach.	
• This approach will not depen	d on historical data for decision making	
purposes.		
Learning based approach		
• The learning based approach	es rely on past behavior and trends of data	
flow through the IoT archited	cture.	
• In this mothed antimization (and) of OoC momentum is mumared (attained)	

• In this method optimization(best) of QoS parameters is pursued(attained)

	by			
	 Learning from historical trends 			
	 Trying to optimize previous solutions further 			
	 Enhance the collective behavior of the IoT implementation. 			
	-			
	• During the decision making stages the memory requirements and			
	processing requirements are high.			
	• The most common example of a learning based approach is machine			
4	learning.	10	004	1.0
4	What is an SLA? Why it is important in cloud computing? What are the metrics used for the construction of SLA?	10	CO4	L2
	Solution:			
	Service-Level Agreement in Cloud Computing			
	• An understanding or an agreement made between CSP and the customer about the services is known as service-level agreement (SLA).			
	• An SLA provides a detailed description of the services that will be received			
	by the customer.			
	Importance of SLA			
	• An SLA is important from two point of views:			
	Customer Point of View			
	CSP Point of View Customer Beint of View			
	 Customer Point of View Each CSP has its SLA, which contains a detailed description of the 			
	services.			
	• If a customer wants to use a cloud service, he/she can compare the SLAs of different experimentiations and can always a material CSD based on the SLAs			
	different organizations and can choose a preferred CSP based on the SLAs. CSP Point of View			
	• In some cases, if certain performance issues may occur for a particular			
	service, then CSP may not be able to provide the services efficiently.			
	 Thus, in such a situation, a CSP can explicitly mention in the SLA that they are not responsible for inefficient service. 			
	Metrics for SLA			
	• A few common metrics that are required for constructing an SLA are as			
	follows:			
	 (i) Availability (ii) Response Time 			
	 (ii) Response Time (iii) Portability 			
	 (iii) Foldonký (iv) Problem Reporting 			
	• (v) Penalty			
	• Availability: This metric signifies the amount of time the service will be			
	accessible for the customer.(for how much time a customer can use the service)			
	• Response Time: The maximum time that will be taken for responding to a			
	customer request is measured by response time.			
	 Portability: This metric indicates the flexibility of transferring the data to another service. 			
	 Problem Reporting: How to report a problem, whom and how to be contacted, is explained in this metric. 			
	• Penalty: The penalty for not meeting the promises mentioned in the SLA			
5	What is cloud simulation? Explain the features of greencloud simulator?	10	CO4	L3
	Solutions:			

Cloud simulation			
• Before real implementation of an IoT system with the cloud estimating			
the performance is challenging.			
• Real deployment of the cloud is a complex and costly procedure.			
• Thus, there is a requirement for simulating the system through a cloud simulator before real implementation.			
• There are many cloud simulators that provide pre-deployment test to			
evaluate system by repeating the tests.			
• Different types of cloud simulators are available.			
• A few cloud simulators are			
• CloudSim			
 CloudAnalyst 			
• GreenCloud			
GreenCloud			
• Description:			
 GreenCloud is developed as an extension of a packet-level network simulator, NS2. 			
 This simulator can monitor the energy consumption of different 			
network components such as servers and switches.			
• Features:			
 (1) GreenCloud is an open-source simulator with user-friendly GUI. 			
 (2) It provides the facility for monitoring the energy 			
consumption of the network and its various components.			
• (3) It supports the simulations of cloud network components.			
• (4) It enables improved power management schemes.			
• (5) It allows a user to manage and configure devices,			
dynamically, in simulation			
Explain about the architecture of a sensor cloud platform.	10	CO4	L2
Solution:			
Architecture of a sensor-cloud platform			
• In a traditional cloud computing architecture, two actors, cloud service			
provider (CSP) and end users (customer) play the key role. Unlike			
cloud computing, in sensor-cloud architecture, the sensor owners play			
A an unportant role along with the setuice provider and end listers. A			
an important role along with the service provider and end users. A service provider in sensor-cloud architecture is known as a sensor-cloud			

Actors in sensor-cloud architecture

In a sensor-cloud architecture, three actors are present

- End User
- Sensor Owner
- Sensor-Cloud Service Provider (SCSP)

End User

• This actor is also known as a customer of the sensor-cloud services. An end user registers him/herself with the infrastructure through a Web portal. Then he/she chooses the template of the services that are available in the sensor-cloud architecture to which he/she is registered. Finally, through the Web portal, the end user receives the services. Based on the type and usage duration of service, the end user pays the charges to the SCSP.

Sensor Owner

• Deployment of the sensors is essential in order to provide services to the end users. These sensors in a sensor- cloud architecture are owned and deployed by the sensor owners. A particular sensor owner can own multiple homogeneous or heterogeneous sensor nodes. Based on the requirements of the users, these sensor nodes are virtualized and assigned to serving multiple applications at the same time. A sensor owner receives rent depending upon the duration and usage of his/her sensor node(s).

SCSP

• An SCSP is responsible for managing the entire sensor-cloud infrastructure (including management of sensor owners and end users handling, resource handling, database management, cloud handling etc.), centrally. The SCSP receives rent from end users with the help of a predefined pricing model. The pricing scheme may include the infrastructure cost, sensor owners' rent, and the revenue of the SCSP. Different algorithms are used for managing the entire infrastructure. The SCSP receives the rent from the end users and shares a partial amount with the sensor owners. The remaining amount is used for maintaining the infrastructure. In the process, the SCSP earns a certain amount of revenue from the payment of the end users

Sensor-Cloud Architecture from Different Viewpoints

• Two view points:		
• (i) User Organizational View And		
• (Ii) Real Architectural View		