

Roll
No.

Internal Assessment Test III – April 2023

Sub:
Introduction to Python Programming--Scheme and
Solution

Sub
Code:

BPLCK105B Branch:
Chemistry
Cycle

Date: 05-04-2023 Duration: 90 min’s Max Marks: 50
Sem /

Sec:
I / Chemistry Cycle OBE

Answer any FIVE FULL QUESTIONS
MARK

S
CO RB

T
1(a) Explain how to copy, move, and rename files in Python using shutil module methods.

Explanation – [2.5 marks]

Example code– [2.5 marks]

The shutil module in Python provides functions for working with files and directories. You
can use shutil to copy, move, and rename files

i) Copying files : To copy a file from one location to another, use the

shutil.copy(src, dst) method. The src argument is the path of the source file,

and the dst argument is the path of the destination file. If dst is a directory, the

file is copied with the same name to that directory

import shutil
Copy a file from src to dst
src = 'path/to/source/file.txt'
dst = 'path/to/destination/file.txt'
shutil.copy(src, dst)

ii) Moving files: To move a file from one location to another, use the

shutil.move(src, dst) method. The src argument is the path of the source file,

and the dst argument is the path of the destination file. If dst is a directory, the

file is moved with the same name to that directory

import shutil
Move a file from src to dst
src = 'path/to/source/file.txt'
dst = 'path/to/destination/file.txt'
shutil.move(src, dst)

Both shutil.copy() and shutil.move() can handle both files and directories.

iii) Renaming files : To rename a file, use the os.rename(src, dst) method. The src

argument is the path of the source file, and the dst argument is the new name of
the fileimport os

Rename a file
src = 'path/to/source/file.txt'
dst = 'path/to/source/new_file.txt'
os.rename(src, dst)

5 CO3 L2

 (b) Write a python program to walk a directory tree and display the files with extensions

.txt or .py,

Full Program: [2 Marks]

Logic for pattern Matching –[3 Marks]

5 CO3 L3

Solution :
An example Python program that walks a directory tree and displays the files with
extensions .txt or .py
import os
The root directory to start the search from
root_dir = 'path/to/root/directory'
Walk the directory tree
for dirpath, dirnames, filenames in os.walk(root_dir):
 for filename in filenames:
 # Check if the file has the .txt or .py extension
 if filename.endswith('.txt') or filename.endswith('.py'):
 # Display the file path
 file_path = os.path.join(dirpath, filename)
 print(file_path)
we first set the root_dir variable to the path of the directory we want to search in. We then

use the os.walk() method to iterate over all the files and directories in the root_dir directory
tree.
For each directory, we loop through the filenames in the filenames list. We use the

endswith() method to check if the filename ends with either the .txt or .py extension. If it
does, we join the directory path with the filename using os.path.join() and print the
resulting file path.

The os.walk() method traverses the entire directory tree, so this program may take some
time to complete if you have a large number of files and directories in the root_dir.

2(a) What is compressing files? Explain reading, extracting and creating ZIP files with

code snippets

Explanation – [2.5 marks]

Example code– [2.5 marks]
Solution :
Compressing files means reducing the size of one or more files to save disk space and
make them easier to transfer over the internet. One way to compress files is to use a file
archive format like ZIP .
A ZIP file is a compressed archive that can contain one or more files and directories. It is a
popular file format used for compressing and archiving files on Windows, macOS, and
Linux.
We can use the built-in zipfile module. Here's how you can read, extract, and create ZIP
files with code snippets

1. Reading a ZIP file : To read the contents of a ZIP file in Python, you can use the

zipfile.ZipFile class

 Example:

import zipfile
Open the ZIP file
with zipfile.ZipFile('example.zip', 'r') as zip_file:
 # Print the list of files in the ZIP file
 print(zip_file.namelist())
 # Print the contents of a specific file in the ZIP file
 with zip_file.open('example.txt') as file:
 print(file.read())

we use the with statement to open the ZIP file in read mode. We then use the namelist()
method to print the list of files in the ZIP file. Finally, we use the open() method to open a
specific file in the ZIP file and read its contents
ii) Extracting a ZIP file : To extract the contents of a ZIP file in Python, you can use the

zipfile.ZipFile.extractall() method
Example:

import zipfile

5 CO3 L3

Open the ZIP file
with zipfile.ZipFile('example.zip', 'r') as zip_file:
 # Extract all the files in the ZIP file to a directory
 zip_file.extractall('extracted_files')

iii) Creating a ZIP file : To create a new ZIP file in Python, you can use the

zipfile.ZipFile class in write mode.

Example

import zipfile
Create a new ZIP file
with zipfile.ZipFile('new.zip', 'w') as zip_file:
 # Add a file to the ZIP file
 zip_file.write('example.txt')

we use the with statement to create a new ZIP file in write mode. We then use the write()

method to add a file called 'example.txt' to the ZIP file.

 (b) Write a program to rename the filename .contains American style dates to European

style dates in the working directory?

Full Program: [2 Marks]
Logic for pattern Matching –[3 Marks]

Solution:

import os
import re
Regular expression pattern to match American style dates
date_pattern = re.compile(r'([01]?\d)[-/.]([0-3]?\d)[-/.]((?:19|20)\d{2})')
Iterate over all files in the working directory
for filename in os.listdir():
 # Check if the filename contains an American style date
 if date_pattern.search(filename):
 # Rename the file with a European style date
 new_filename = date_pattern.sub(r'\2-\1-\3', filename)
 os.rename(filename, new_filename)
 print(f'Renamed {filename} to {new_filename}')
we first define a regular expression pattern to match American style dates. The pattern

matches dates in the format MM/DD/YYYY, MM.DD.YYYY, or MM-DD-YYYY.

We then use the os.listdir() function to iterate over all the files in the working directory. For

each file, we use the search() method of the regular expression pattern to check if the
filename contains an American style date.

If the filename contains an American style date, we use the sub() method of the regular

expression pattern to replace the date with a European style date in the format DD-MM-

YYYY. We then use the os.rename() function to rename the file with the new filename. we
print a message to the console indicating that the file has been renamed.

5 CO3 L3

3(a) What is the use of send2trash module's send2trash method? How is it different from

os.unlink()? Explain with code snippet.

Explanation – [2.5 marks]

Example code– [2.5 marks]

The send2trash module's send2trash function provides a way to delete files or directories
by sending them to the operating system's trash or recycle bin instead of permanently
deleting them with the os.unlink function. This can be useful to avoid accidental deletion of
files, as files in the trash or recycle bin can be easily recovered if needed.
example code snippet:
import os

5 CO3 L2

from send2trash import send2trash

create a file to be deleted
with open('example.txt', 'w') as f:
 f.write('Hello, world!')

delete the file using os.unlink
os.unlink('example.txt')

check if the file exists (should raise FileNotFoundError)
if os.path.exists('example.txt'):
 print('File exists')
else:
 print('File does not exist')

create the file again
with open('example.txt', 'w') as f:
 f.write('Hello, world!')

delete the file using send2trash
send2trash('example.txt')

check if the file exists (should return False)
if os.path.exists('example.txt'):
 print('File exists')
else:
 print('File does not exist')

Here, we create a file called 'example.txt', and then delete it using both os.unlink and
send2trash. After each deletion, we check if the file exists using os.path.exists . With

os.unlink , the file is permanently deleted and os.path.exists.

In this code, raises a FileNotFoundError. With send2trash, the file is moved to the trash

or recycle bin and os.path.exists returns False.

the main difference between send2trash and os.unlink is that send2trash moves files to
the trash or recycle bin instead of permanently deleting them, which can be useful for
avoiding accidental deletion and allowing for easy recovery if needed.

 (b) Define assertions. What does an assert statement in python consists of? Explain how

assertions can be used with Python code snippets.

Explanation – [2.5 marks]

Example code– [2.5 marks]

Solution: Assertions are statements in Python that can be used to check if a condition is
true. They are often used as a debugging aid to ensure that the assumptions made by the
programmer about the state of the program are correct. If the assertion is false, an

AssertError is raised, indicating that there is a bug in the program.
An assert statement consists of the assert keyword, followed by a condition that is
expected to be true.
Example.

x = 5
assert x == 5, "x is not 5"
Here, we use the assert statement to check that the variable x has the value 5. If the
condition x == 5 is false, an AssertionError is raised with the message "x is not 5"

5 CO3 L2

Assertions can be used to add automated tests in codes to catch bugs early in the
development process. For example, we can use assertions to check that the output of a
function is correct for a given input.
def square(x):
 return x ** 2
assert square(2) == 4, "square(2) should be 4"
assert square(3) == 9, "square(3) should be 9"
assert square(-2) == 4, "square(-2) should be 4"

Here, we define a function square that returns the square of a number. We then use assert
statements to check that the output of the function is correct for different input values.

4(a) Differentiate Assertions and Exceptions

4 points 4 marks

Assertion Exception
An assertion is a sanity check to make
sure your code isn’t doing something

obviously wrong.

Exceptions, on the other hand, are used to
handle unexpected situations that occur
during program execution, such as input
errors or system failures.

In code, an assert statement consists of

the following:
The assert keyword

A condition (that is, an expression that
evaluates to True or False)
A string to display when the condition

is False
>>> ages = [26, 57, 92, 54, 22, 15, 17,

80, 47, 73]
>>> ages.sort()
>>> ages

[15, 17, 22, 26, 47, 54, 57, 73, 80, 92]
>>> assert ages[0] <= ages[-1] “Sorting

is wrong”
Assert that the first age is <= the last
age.

Try except block is used to handle

exception
def spam(n):
 try:
 return 42/n
 except :
 print("Divide by Zero Error")

print(spam(12))
print(spam(42))
print(spam(0))
print(spam(21))

Unlike exceptions, your code
should not handle assert statements
with try and except; if an assert fails, your
program should crash.

When an exception is raised, the normal
flow of the program is interrupted and
control is transferred to an exception
handler.

Assertions are for programmer errors, not
user errors. Assertions should only fail
while the program is under development;
When an assertion fails, an AssertionError
is raised, indicating that the code is not
behaving as expected

.Exceptions are often used to gracefully
handle errors and recover from
unexpected situations, allowing the
program to continue running

4 CO3 L2

 (b) Write a Python program to convert hours, minutes and seconds into seconds using class
[Define Time Class with attribute hour, minute, second]
Sample input / output

6 CO4 L3

Enter time hrs, min and sec : 01 34 50
Time in seconds : 5690
Solution:

class Time:
 def __init__(self, hour, minute, second):
 self.hour = hour
 self.minute = minute
 self.second = second

 def to_seconds(self):
 return self.hour * 3600 + self.minute * 60 + self.second

Get input from user
hours, minutes, seconds = input("Enter time hrs, min and sec: ").split()
hours, minutes, seconds = int(hours), int(minutes), int(seconds)

Create a Time object and convert to seconds
time_obj = Time(hours, minutes, seconds)
total_seconds = time_obj.to_seconds()

Display output
print("Time in seconds:", total_seconds)

Output:

Enter time hrs, min and sec: 01 34 50
Time in seconds: 5690

5(a) Implement a Time class with methods for following features:
i) To display time in HH:MM:SS with __str__ () method
ii) To add two time objects (using operator overloading)

Full Program: [3 Marks]
Logic for overloading –[3 Marks]

Solution:

i) To display time in HH:MM:SS with __str__ () method

class Time:
 def __init__(self, hour, minute, second):
 self.hour = hour
 self.minute = minute
 self.second = second

 def __str__(self):
 return f"{self.hour:02}:{self.minute:02}:{self.second:02}"

 def __add__(self, other):
 total_seconds = self.to_seconds() + other.to_seconds()
 return Time.from_seconds(total_seconds)

 def to_seconds(self):
 return self.hour * 3600 + self.minute * 60 + self.second

 def from_seconds(cls, seconds):
 hour, remaining_seconds = divmod(seconds, 3600)
 minute, second = divmod(remaining_seconds, 60)
 return cls(hour, minute, second)

6 CO4 L3

ii) To add two time objects (using operator overloading)
Create two Time objects
time1 = Time(1, 30, 0)
time2 = Time(0, 45, 15)

Display the Time objects using the __str__() method
print(f"time1: {time1}")
print(f"time2: {time2}")

Add the Time objects using the __add__() method
total_time = time1 + time2

Display the result using the __str__() method
print(f"total time: {total_time}")
Output:
time1: 01:30:00
time2: 00:45:15
total time: 02:15:15

 (b) Differentiate pure functions and modifiers with example.

4 Points at least – 4 Marks
Solution:

In Python, functions can be classified into two main categories: pure functions and
modifiers (also known as impure functions).

Pure functions are functions that do not modify the input arguments and do not have any
side effects. They always return the same output given the same input arguments. Pure
functions are predictable and easy to test.

On the other hand, modifiers are functions that modify the input arguments and/or have side
effects. They can return a value or not, but their primary purpose is to modify the state of
the program. Modifiers are unpredictable and difficult to test.

Here are examples of each type of function:

Example of a pure function:

python
 def add_time(t1,t2):
 sum=Time()
 sum.hour = t1.hour + t2.hour
 sum.minute = t1.minute + t2.minute
 sum.second = t1.second + t2.second
 if sum.second >= 60: sum.second -= 60
 sum.minute += 1
 if sum.minute >= 60:
 sum.minute -= 60
 sum.hour += 1
 return sum
This function takes two arguments and returns their sum. It does not modify the input
arguments or have any side effects. It will always return the same output given the same
input arguments, making it a pure function.

Example of a modifier function:

4 CO4 L2

def increment(t, seconds):
 t.second += seconds
 while t.second >= 60:
 t.second -= 60
 t.minute += 1
 while t.minute >= 60:
 t.minute -= 60
 t.hour += 1

This function takes t which is a time object. It modifies the attributes(second, minute and
hour) of t object hence this function increment is modifier function

6(a) Explain __init__ () and __str__() methods with example program.

Explanation – [2.5 marks]
Example code– [2.5 marks]

Solution:

In Python, __init__() and __str__() are two special methods that are commonly used in
classes.

__init__() is a constructor method in Python that is used to initialize the object's attributes.
It is called when an instance of the class is created. The self parameter in __init__() refers
to the instance of the class that is being initialized, and can be used to set attributes for that
instance.

__str__() is a special method in Python that is used to define a string representation of an
object. It is called when the str() function is called on an object. The self parameter in
__str__() refers to the instance of the class, and can be used to access its attributes and
return a string representation of the object.

Here is an example program that demonstrates the use of __init__() and __str__() methods
in Python:

python

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def __str__(self):
 return f"{self.name} ({self.age} years old)"

person1 = Person("John", 30)
person2 = Person("Jane", 25)

print(person1) # Output: John (30 years old)
print(person2) # Output: Jane (25 years old)
In this program, we define a Person class that has two attributes: name and age. We use the
__init__() method to initialize these attributes when an instance of the class is created.

We also define the __str__() method to return a string representation of the object. When
we print an instance of the Person class using the print() function, the __str__() method is
called to return a string representation of the object.

5 CO4 L3

 (b) What is operator overloading? Write a program to add to Point objects by overloading +
operator. Also overload __str__() to display point as an ordered pair.

Explanation – [2.5 marks]

Example code– [2.5 marks]

Solution:

Operator overloading is the ability of a programming language to define operators for user-
defined types or objects. In Python, the "+" operator can be overloaded to add two objects
of a user-defined class.

Here's an example program that demonstrates operator overloading for a Point class:

python

class Point:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __add__(self, other):
 return Point(self.x + other.x, self.y + other.y)

 def __str__(self):
 return f'({self.x}, {self.y})'

p1 = Point(2, 3)
p2 = Point(-1, 5)
p3 = p1 + p2

print(p1) # Output: (2, 3)
print(p2) # Output: (-1, 5)
print(p3) # Output: (1, 8)
In this example, we define a Point class with __add__() and __str__() methods. __add__()
method is used to overload the "+" operator to add two Point objects, while __str__()
method is used to overload the str() function to display the Point object as an ordered pair.

We create two Point objects p1 and p2, and then add them together using the "+" operator,
which calls the __add__() method of the Point class. The resulting Point object is stored in
p3 and then displayed using the __str__() method.

5 CO4 L3

7(a) Explain the use of following debugging functions with example code snippets

i) isinstance() ii) hasattr() iii) vars()

Explanation – [2.5 marks]

Example code– [2.5 marks]

Solution:

The isinstance() function is used to determine whether an object is an instance of a specific
class or not. It returns True if the object is an instance of the specified class, otherwise
returns False.
Example:

5 CO4 L3

python

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p = Person("John", 36)
print(isinstance(p, Person)) # Output: True
print(isinstance("hello", Person)) # Output: False
hasattr() function:
The hasattr() function is used to determine whether an object has a given named attribute or
not. It returns True if the object has the named attribute, otherwise returns False.
Example:

python

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p = Person("John", 36)
print(hasattr(p, "name")) # Output: True
print(hasattr(p, "gender")) # Output: False
vars() function:
The vars() function returns the __dict__ attribute of an object. It returns a dictionary
containing the object's attributes.
Example

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p = Person("John", 36)
print(vars(p)) # Output: {'name': 'John', 'age': 36}

 (b) Differentiate aliasing & copying objects and shallow copy & deep copy with example
program in Python.

Explanation – [2.5 marks]

Example code– [2.5 marks]

Solution:

An object will be aliased whenever there an object is assigned to another object of same
class. This may happen in following situations –

 Direct object assignment (like p2=p1)

 When an object is passed as an argument to a function

 When an object is returned from a function

>>> class Point:
pass

>>> p1=Point()

>>> p1.x=10

5 CO4 L3

>>> p1.y=20
>>> p2=p1

>>> print(p1)

< main .Point object at 0x01581BF0>

>>> print(p2)

< main .Point object at 0x01581BF0>

If we need a copy of an object, but not an alias, do this, Python provides a module called
copy and a method called copy(). Consider the below given program to understand the
concept.

>>> class Point:

pass

>>> p1=Point()
>>> p1.x=10

>>> p1.y=20

>>> import copy #import module copy

>>> p3=copy.copy(p1) #use the method copy()
>>> print(p1)

< main .Point object at 0x01581BF0>

>>> print(p3)

< main .Point object at 0x02344A50>
>>> print(p3.x,p3.y)
This is called shallow copying.
The copy() method of copy module duplicates the object.
import copy
class Point:
""" This is a class Point representing coordinate point
"""
class Rectangle:
""" This is a class Rectangle. Attributes: width, height and Corner Point """
box1=Rectangle()
box1.corner=Point()
box1.width=100
box1.height=200
box1.corner.x=0
box1.corner.y=0
box2=copy.copy(box1)
print(box1 is box2) #prints False
print(box1.corner is box2.corner) #prints True
If we use copy.copy()inner object point will not be copied. It will be shared by box1 and
box2 objects. That’s is the reason second print statement output True
If we use copy.deepcopy() inner object point(corner) is also copied and occupy separate
memory. This is deep copying.

box3=copy.deepcopy(box1)
print(box1 is box3)#prints False
 print(box1.corner is box3.corner)
#prints False

