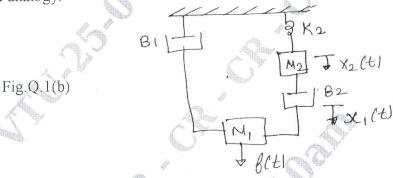


Time: 3 Thrs

15EE61


Semester B.E. Degree Examination, June/July 2023 Control Systems

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define control system. Distinguish between open loop and closed loop system with an example. (06 Marks)
 - b. For the mechanical system shown in Fig.Q.1(b). Write the differential equation relating to the mechanical system. Also obtain electrical analogous circuits using i) F-V analogy ii) F-I analogy. (10 Marks)

OR

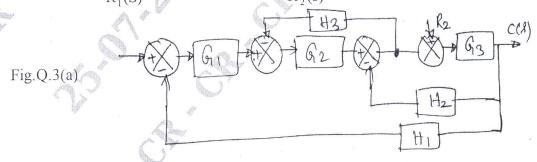
2 a. Derive the transfer function of armature controlled DC motor.

(06 Marks)

b. Explain in detail the AC servometer.

(05 Marks)

c. Explain the synchro as an error detector.

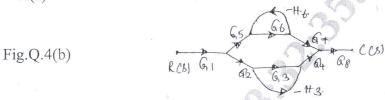

(05 Marks)

Module-2

- 3 a. Determine using block reduction
 - i) When $R_2 = 0 \frac{C(s)}{R(s)}$

ii) When $R_1 = 0 \frac{C(s)}{R_1(s)}$

(10 Marks)



- b. Define: i) Source and sink node primary feed back signal.
- ii) Loop and forward path
- iii) Error signal and (06 Marks)

4 a. Explain Mason's gain formula indicating each term.

(04 Marks)

b. Find: $\frac{C(s)}{R(s)}$ by Mason's gain formula.

(08 Marks)

c. What is transfer function? List the limitations of transfer function.

(04 Marks)

Module-3

- 5 a. Derive the time Domain specification
 - i) Peak time (Tp) ii) Rise time (Tr).

(06 Marks)

- b. What are the necessary and sufficient condition for the system to be stable as for RF criteria?
 (04 Marks)
- c. An unity feedback system has $G(S) = \frac{20(1+s)}{s^2(2+s)(4+s)}$. Calculate its steady state error co-efficient and error when the applied input is $r(t) = 40 + 2t + 5t^2$. (06 Marks)

OR

6 a. The open loop transfer function of a unity feedback system is given by

G(s) =
$$\frac{10K(s+0.5)}{s^2(s+2)(s+1)}$$
. Find the values of K.

(05 Marks)

b. Comment on stability using routh criteria of characteristic equation.

$$s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$$

(05 Marks)

c. Derive an expression for response of second order underdamped system for unit step input.
(06 Marks)

Module-4

7 a. Write a note on frequency domain specifications.

(06 Marks)

b. Sketcsh the complete root locus of system having $G(S)H(S) = \frac{K}{s(s+1)(s+2)(s+3)}$. (10 Marks)

OR

8 a. Derive an expression for resonant peak and resonant frequency for a second order system.
(06 Marks)

b. For the following transfer function draw bode plot and obtain gain cross over frequency

$$G(s) = \frac{20}{s(1+3s)(1+4s)}.$$
 (10 Marks)

Module-5

BANGALORE - 560 037

9 a. Explain the Nyquist stability criteria.

(06 Marks)

b. Explain step by step procedure to design lag compensation network.

(10 Marks)

OR

10 a. Sketch the Nyquist plot and comment on the stability of the closed loop system whose open loop transfer function is $G(s)H(s) = \frac{5}{s(1-s)}$. (10 Marks)

b. Write notes on PID controller.

(06 Marks)