Third Semester B.E.

Analog

Time 3 hrs

Semester B.E. Degree Examination, June/July 2023

Analog Electronic Circuits

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain diode positive shunt clipper circuit with I/O waveforms and transfer characteristics.
 (06 Marks)
 - b. With neat diagram and waveforms explain the working of a negative clamper. (06 Marks)
 - c. For the clipper circuit shown in the Fig.Q.1(c), the input is $V_i = 50 \sin wt$. Plot the o/p voltage waveform and transfer characteristics. (08 Marks)

Fig.Q.1(c)

OR

- 2 a. Explain emitter bias circuit, with the help of base-emitter and collector-emitter loop. Write the necessary equations. (08 Marks)
 - b. For the fixed bias circuit, derive expressions for S_{ICO} , S_{β} and S_{VBE} .

(06 Marks)

c. An emitter bias configuration has the following specifications:

$$I_{CQ} = \frac{1}{2}I_{C}$$
 (sat), I_{C} (sat) = 8mA, V_{CC} = 18V and β = 110. Determine R_{B} , R_{C} and R_{E} .

(06 Marks)

Module-2

- a. Obtain the expressions for voltage gain, input and output impedance for Emitter bias circuit with unbypassed R_E using re model. (10 Marks)
 - b. For the network shown in Fig.Q.3(b), determine i) Z_i ii) Z_o iii) A_v iv) A_i . (10 Marks)

1 of 3

- 4 a. Derive an expression for Z_i, Z_o, A_v and A_I for voltage divider bias configuration using approximate hybrid model. (10 Marks)
 - b. A transistor in CE mode has h-parameters; $h_{ie}=1100\Omega$, $h_{re}=2.5\times10^{-4}$, $h_{fe}=100$, $h_{oe}=25\mu\text{A/v}$. Determine the equivalent CB parameters. (04 Marks)
 - c. A voltage divider bias circuit has $R_1=47K\Omega$, $R_2=10K\Omega$, $R_C=2.2K\Omega$, $R_E=560\Omega$, $V_{CC}=14V$. Assuming R_E is bypassed, determine voltage gain, i/p and o/p impedance. Take h-parameters of the transistor to be $h_{ie}=1100\Omega$, $h_{fe}=100$, $h_{oe}=25\mu A/v$. (06 Marks)

Module-3

- 5 a. For the cascaded arrangement shown below in Fig.Q.5(a) determine:
 - i) The loaded gain for each stage.
 - ii) The total gain for the system Avand Avs
 - iii) The total current gain for the system
 - iv) The total gain for the system if the emitter follower configuration were removed.
 - v) The phase relation between v_0 and v_i . (10 Marks)

Fig.Q.5(b)

b. Derive expression for Z_i and A_I for a Darlington, Emitter follower circuit.

(10 Marks)

OR

- a. With the help of block diagram, explain the concept of feedback. (08 Marks)
 - b. For a current series feedback amplifier, derive an expression for output impedance with feedback. (06 Marks)
 - c. Determine the voltage gain, input and output resistance with feedback for voltage series feedback having A = -100, $R_i = 10K\Omega$, $R_0 = 20K\Omega$ for feedback of i) $\beta = -0.1$ ii) $\beta = -0.5$ (06 Marks)

CMRIT LIBRARY

Module-4 BANGALORE - 560 037

- 7 a. With neat circuit and waveforms, explain the operation of a transformer coupled class A power amplifier. (10 Marks)
 - b. Show that maximum efficiency of class = B push pull power amplifier circuit is 78.5%.
 (10 Marks)

OR

- 8 a. With a neat circuit diagram and waveform, explain the operation of RC phase shift oscillator using BJT. Write the expression for frequency of oscillation. (10 Marks)
 - b. With a neat circuit diagram and waveform, explain the working principle of crystal oscillator operating in series resonant mode. A crystal has L= 0.334H, C = 0.065pF and R = 5.5KΩ. Calculate its series resonant frequency.

Module-5

- 9 a. List out the differences between BJT and FET.
 - b. With the help of neat diagrams, explain the construction, working and characteristics of n-channel JFET. (10 Marks)
 - c. Obtain the expression for transconductance 'gm' of JFET.

(05 Marks)

(05 Marks)

OR (

10 a. With a neat sketch, explain the construction and working principle of N-channel enhancement type MOSFET and also explain its static drain characteristics. (10 Marks)

b. Determine Z_I, Z_o and A_V for JFET common source amplifier with fixed bias configuration using AC equivalent small signal model. (10 Marks)