hird Semester B.E. Degree Examination, June/July 2023 **Analog Electronic Circuit**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module. BANGALORE

Module-1

Define Q or Operating point

(02 Marks)

- What is a clipper circuit? Explain the working of a double ended clipper with a suitable (08 Marks)
- List various types of clamper circuit. With a neat circuit diagram, explain the working of a (10 Marks) negative clamper.
- OR Discuss emitter stablized bias circuit. Also derive expression for IB, IC, VB and Vc. (10 Marks) 2 a.
 - Determine the following for the fixed bias configuration of Fig.2(b). Assume β =50. (i) I_{BQ} and I_{CQ} (ii) V_{CEQ} (iii) V_B and V_C (iv) V_{BC}

In
$$V_{C}$$
 and V_{C} (17) $V_{CC} = 12$ $V_{CC} = 12$

(10 Marks)

Module-2

- Derive an expression for Ay, Zi and Zo of CE voltage divider bias circuit using hybrid model.
 - For the collector feedback configuration of Fig 3(b), calculate (i) re (ii) Zi and Zo (iii) Ay and A_I Consider β =200, r_o =60Kr.

(10 Marks)

OR

(10 Marks)

(10 Marks) 4 a. 6.8K1 IOMA Fig.4(a) Why hybrid model is called as hybrid? Obtain h - parameters from equivalent circuit of (10 Marks) common - emitter configuration. Module-3 Define Multistage Amplifier. Derive voltage gain and current gain of a two stage cascaded 5 (10 Marks) amplifier. Derive an expression for Zi and Ai for Darlington Emitter follower circuit. (10 Marks) b. OR Find out input and output impedance of a current series feedback amplifier. (10 Marks) 6 a. Determine the voltage gain, input and output impedance with feedback for voltage series feedback having A = -100 , Ri = 10 k Ω , $\,R_0$ = 20 k Ω for feedback of (10 Marks) i) $\beta = -0.1$ and ii) $\beta = -0.5$. Module-4 With a neat circuit diagram, explain the AC Operation of series - fed class - A amplifier. 7 Also derive maximum efficiency of the amplifier. Show that maximum efficiency of Class – B push pull power amplifier is 78.54%. (10 Marks) OR Explain the working of R.C phase shift oscillator. If $R=1~k\Omega$, $R_c=1~k\Omega$ and $C=0.1\mu f,$ 8 (10 Marks) Calculate the frequency of oscillations. Discuss the working of Wein Bridge Oscillator, with a suitable diagram. (10 Marks) Module-5 (10 Marks) a. Describe the working and characteristics of M - Channel JFET. For a self – bias circuit, V_{DD} = + 20 , R_D = 3.3 $k\Omega$, R_G = 1 $M\Omega$, R_S = 1 $k\Omega$, $I_{DSS} = 8 \text{mA}$ and $V_P = -6 \text{V}$. Determine 1) V_{GS} ii) I_D iii) V_{DS} iv) V_S (10 Marks) V) V_G CMRIT LIBRARY BANGALORE - 560 037 OR With a neat structure, explain the operation of an n - channel depletion type MOSFET. 10 (10 Marks) Compare JFET with MOSFET. Sketch the transfer characteristics for an N - channel

For the network of fig 4(a), determine: (i) r_e (ii) Z_i (iii) Z_o (r_o =00) (iv) A_v (r_o = ∞)

depletion type MOSFET with $I_{DSS} = 10$ mA and $V_P = -4$ V.