15EC52

Fifth Semester B.E. Degree Examination, June/July 2023 CMR

Digital Signal Processing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define DFT and IDFT of a signal obtain the relationship between of DFT and z transform. 1
 - Compute circular convolution using DFT and IDFT for the following sequences, $x_1(n) = \{2, 3, 1, 1\} \text{ and } x_2(n) = \{1, 3, 5, 3\}.$ (10 Marks)

OR

- The first five samples of the 8 point DFT x(k) are given as follows: x(0) = 0.25, x(1) = 0.125 - j0.3018, x(4) = x(6) = 0, x(5) = 0.125 - j0.0518. Determine the remaining samples, if the x(n) is real valued sequence. (04 Marks)
 - b. State and prove the circular time shift and circular frequency shift properties. (06 Marks)
 - c. If $x(n) = \{1, 2, 0, 3, -2, 4, 7, 5\}$, evaluate the following:

(06 Marks)

Module-2

- j), using properties of DFT, Let x(n) be a finite length sequence with X(K)= find the DFT of the followings:
 - $x_1(n) = e^{/2}$

(08 Marks)

b. Find the response of an LTI system with an impulse response $h(n) = \{3, 2, 1\}$ for the input 3,5,6,-1,2,0,2,1 using overlap add method. Use 8-point circular (08 Marks) convolution.

- State and prove the,
 - Modulation property. (ii)
- Circular time shift property.

(08 Marks)

- Consider a finite duration sequence $x(n) = \{0, 1, 2, 3, 4, 5\}$
 - Find the sequence, y(n) with 6 point DFT is $y(K) = W_2^K X(K)$. (i)
 - Determine the sequence y(n) with 6-point DFT y(K) = Real[X(K)]. (08 Marks) (ii)

Module-3

- Given $x(n) = \{1, 0, 1, 0\}$, find x(2) using Goertzel algorithm. (06 Marks) 5
 - Find the 8-point DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIT FFT radix (10 Marks) 2 algorithm.

What is chirp-z transform? Mention its applications?

(06 Marks)

Find the 4-point circular convolution of x(n) and h(n) give below, using radix-2. DIF-FFT algorithm.

 $x(n) = \{1, 1, 1, 1\}$

$$h(x) = \{1, 0, 1, 0\}.$$

(10 Marks)

Design a digital low pass Butterworth Filter using bilinear transformation to meet the following specifications:

 $-3 dB \le |H(e^{j\omega})| \le -1 dB \text{ for } 0 \le \omega \le 0.5\pi$ $|H(e^{j\omega})| \le -10 dB \text{ for } 0.7\pi \le \omega \le \pi$

$$|H(e^{j\omega})| \le -10 \, dB$$
 for $0.7\pi \le \omega \le \pi$

(10 Marks)

Obtain the parallel form of realization of a system difference equation,

$$y(n) = 0.75y(n-1) - 0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2)$$

(06 Marks)

Convert the analog filter with system function,

 $H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$ into a digital IIR filter by means of the impulse invariance method.

(08 Marks)

Obtain the DF-I and cascade form of realization of the system function,

(08 Marks)

Module-5

- Obtain direct form I, Form II, Cascade and parallel form of realization for the following System. y(n) = 0.75 y(n-1) - 0.125 y(n-2) + 6x(n) + 7x(n-1) + x(n-2). (12 Marks)
 - Realize an FIR filter given $h(n) = \left(\frac{1}{2}\right)^n [u(n) u(n-4)]$ using direct form I. (04 Marks)

- Write equations of any four different windows used in design of FIR filters. (10 Marks)
 - b. Design the symmetric FIR, lowpass filter whose desired frequency response is given as

The length of the filter should be 7 and $w_c = 1$ radian/sample use rectangular window.

(06 Marks)