Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- State and explain Coulomb's law of force between two point changes in vector form and 1 mention the units.
 - b. A 2mc positive charge is located in vaccum at $P_1(3, -2, -4)m$ and $5\mu c$ negative charge is at $P_2(1, -4, 2)m$.
 - i) Find the vector force on the negative charge
 - ii) What is magnitude of force on the charge at P₁? (08 Marks)
 - Show that the electric field intensity at a point due to 'n' number of point charge is given by

$$\overline{E} = \frac{1}{4\pi \in \int_{\overline{R}=1}^{n} \frac{\theta_{i}}{R_{1}^{2}} \hat{a}_{R_{i}} V/m$$
(06 Marks)

- a. Derive an expression for the electric field intensity due to finite line charge. (08 Marks)
 - b. A ring of radius 6m is placed in yz plane it is centered at origin. Find the electric field intensity at point (8, 0, 0) the line charge density is 18nc/µ. Delivered formula has to be (06 Marks)
 - Define electric flux density. Explain Relationship between electric flux density and electric (06 Marks) field intensity.

Module-2

- Prove that Gauss's law from Coulomb's law of point charge is placed in the origin of sphere. 3 (08 Marks)
 - Find the charge in the volume defined by $0 \le x \le 1$, $0 \le y \le 1$ and $0 \le z \le 1$. If volume (06 Marks) charge density is $\rho_v = 40x^2y \,\mu c/m^3$.
 - c. Derive an expression for electric flux density of infinite line charge along Z axis in (06 Marks) cylindrical surface.

- Show that relationship between Electric field intensity and potential gradient $E = -\nabla V$.
 - An electrostatic field is given by $\vec{E} = \left(\frac{x}{2} + 2y\right)\hat{a}_x + 2x\hat{a}_yV/m$. Find the work done in moving
 - a point charge $Q = 20\mu c$ from (4, 2, 0) to (0, 0, 0)m along a straight line path. (08 Marks) Obtain the expression for point form of current continuity equation. (06 Marks)

Module-3

From point form of Gauss's law Derive an expression for Poisson's equation and Laplace's (06 Marks)

- equation. (08 Marks) b. State and prove uniqueness theorem.
- Verify that potential field given by below satisfies the Laplace's equation i) $V = 2x^2 3y^2 + z^2$ ii) $V = x^2 y^2 + z^2$

i)
$$V = 2x^2 - 3y^2 + z^2$$
 ii) $V = x^2 - y^2 + z^2$ (06 Marks)

5 a.

OR

- 6 a. Using Biot Savart law. Obtain an expression for magnetic field intensity due to infinite long straight conductors. (08 Marks)
 - b. State and prove Stoke's theorem.

(06 Marks)

c. A differential current element with I = 4amp and $|dL| = 10^{-3}$ m is located at point (2, 0, 0) find the magnetic field intensity due to this current element at the point (0, 1, 1) (06 Marks)

Module-4

7 a. Obtain the expression for Lorentz force equation.

(06 Marks)

- b. A point charge of Q = -1.2c has velocity $\overline{V} = (5\hat{a}_x + 2\hat{a}_y 2\hat{a}_z)m/s$. Find the magnitude of the force execrated on the charge. If
 - i) $\overline{E} = -18\hat{a}_x + 5\hat{a}_y 10\hat{a}_z)V/m$
 - ii) $\overline{B} = -4\hat{a}_x + 4\hat{a}_y + 3\hat{a}_z$
 - iii) Both are present simultaneously

(08 Marks)

c. Derive an expression for the force between differential current elements.

(06 Marks)

OR

- 8 a. Discuss the magnetic boundary conditions as applicable to \overline{B} and \overline{H} at the interface between two different magnitude magnetic materials. (10 Marks)
 - b. Write a short note on forces on magnetic materials.

(05 Marks)

c. Derive an expression for inductance of a coaxial cable.

(05 Marks)

Module-5

9 a. Starting from Faraday's law of electromagnetic indirection, Derive an expression

 $\nabla \times \overline{\mathbf{E}} = -\frac{\partial \mathbf{B}}{\partial t}$

(06 Marks)

b. Derive the expression for displacement current density using Ampere's circuital law.

(08 Marks)

c. A circular conducting loop of radius 40cm lies in xy plane and has resistance of 20n. If the magnetic flux density in the region is given as

 $\overline{B} = 0.2\cos 500t \ \hat{a}_x + 0.75 \sin 400t \ \hat{a}_y + 12 \cos 314t \ \hat{a}_z T$

Determine effective value of induced current in the loop.

(06 Marks)

OR

BANGALORE - 560 037
point form and derive the point form of

- a. List the Maxwell's equation in integral form and point form and derive the point form of Maxwell's equation for time varying fields. (10 Marks)
 - b. State and prove Poynting theorem and show that the average power density (Pavge) (10 Marks)

* * * * *