Second Semester B.E./B.Tech. Degree Examination, June/July 2023 Mathematics - It for EEE Stream

Max. Marks: 100

BANGALORE Time. 3 hrs. Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Find the angle between the direction to the normals to the surface $x^2yz = 1$ at the point $(-1, 1, 1)$ and $(1, -1, -1)$.	7	L1	CO1
	b.	If $\vec{F} = \text{grad}(xy^3z^2)$ find div \vec{F} and curl \vec{F} at the point (1, -1, 1).	7	L2	CO1
	c.	Find the divergence and curl of the vector $\vec{V} = (xyz)\hat{i} + (3x^2y)\hat{j} + (xz^2 - y^2z)\hat{k}$ at the point (2, -1, 1)	6	L1	CO1
		OR	1		
Q.2	a.	Using Green's theorem evaluate $\int_C (y - \sin x) dx + \cos x dy$ where C is the plane triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi}x$.	7	L3	CO1
	b.	Use stoke's theorem for vector $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ taken around the rectangle bounded by $x = 0$, $x = a$, $y = 0$, $y = b$.	7	L3	CO1
	c.	Using modern mathematical tools, write the code to find the gradient of $\phi = x^2y + 2xz - 4$.	6	L3	CO5
		Module – 2			
Q.3	a.	Define a subspace. Show that the intersection of any two subspaces of a vector space V is also a subspace of V.	7	L2	CO2
	b.	Show that the set $B = \{(1, 1, 0) (1, 0, 1) (0, 1, 1)\}$ is a basis of the vector space $V_3(R)$.	7	L3	CO2
	c.	Prove that $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(a, b) = (a+b, a-b, b)$ is a linear transform.	6	L3	CO2
		OR	1		
Q.4	a.	Show that the set $S = \{(1, 0, 1) (1, 1, 0) (-1,0,-1)\}$ is linearly dependent in $V_3(R)$.	7	L3	CO2
	b.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x+y, x-y, 2x+z)$. Find the rank and nullity of T and verify rank of T + nullity of T = dim(\mathbb{R}^3).	7	L2	CO2
	c.	Using the modern mathematical tool, write the code to find the dimension of subspace spanned by the vectors (1, 2, 3) (2, 3, 1) and (3, 1, 2)	6	L3	CO5
		1 of 3			

		BMATE20			
		Module – 3			
Q.5	a.	Find the Laplace transform of, (i) $e^{-4t}(2\cos 6t - 3\sin 5t)$ (ii) $\frac{\cos 2t - \cos 3t}{t}$	7	L1	CO3
	b.	Find the Laplace transform of a square wave function, $f(t) = \begin{cases} E & 0 \le t \le \frac{T}{2} \\ -E & \frac{T}{2} \le t \le T \end{cases}$	7	L2	CO3
		$ \begin{cases} -E & \frac{1}{2} \le t \le T \\ Show that & L\{f(t)\} = \frac{E}{S} \tanh\left(\frac{ST}{4}\right). \end{cases} $			
	c.	Express $f(t) = \begin{cases} \sin t & 0 < t < \pi \\ \sin 2t & \pi < t < 2\pi \text{ in terms of unit step function and hence} \\ \sin 3t & t \ge 2\pi \end{cases}$	6	L3	CO3
		find L $\{f(t)\}$.			
Q.6	a.	Find $L^{-1}\begin{bmatrix} 1\\ s(s+1)(s+2)(s+3) \end{bmatrix}$.	7	L1	CO3
	b.	Find $L^{-1}\left[\frac{s}{\left(s^2+a^2\right)^2}\right]$ using convolution theorem.	7	L3	CO3
	c.	Solve by Laplace transform method $y'' + 4y' + 4y = e^{-t}$ with $y(0) = y'(0) = 0$	6	L3	CO3
Q.7	a.	Module -4 Find the real root of the equation $x \log_{10} x = 1.2$ by using the Regula-Falsi method between 2 and 3 (three iterations).	7	L1	CO4
	b.	Given $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$, $\sin 60^\circ = 0.8660$, find $\sin 52^\circ$ using Newton's forward interpolation formula.	7	L3	CO4
	c.	Using Lagrange's interpolation formulae to find $f(5)$ from the following data: x 1 3 4 6 9 $f(x)$ -3 9 30 132 156 CMRIT LIBRARY BANGALORE - 560 037	6	L3	CO4
Q.8	a.	Find the real root of the equation, $x \tan x + 1 = 0$ which is near to $x = \pi$ by using Newton-Raphson method.	7	L2	CO4
	b.	Using Newton's divided difference formulae and find f(4) given the data :	7	L3	CO4
		Evaluate $\int_{0.6}^{0.6} e^{-x^2} dx$ by using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule by taking seven ordinates.	6	L5	CO4

			В	MAT	E201
		Module – 5			
Q.9	a.	Solve $\frac{dy}{dx} = e^x - y$, $y(0) = 2$ by using Taylor's method upto 4^{th} degree terms and find the value of $y(1.1)$.	7	L3	CO4
	b.	Using the Runge-Kutta method of order 4 find y at $x = 0.1$ given that $\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ and $h = 0.1$	7	L3	CO4
	c.	Apply Milne's predictor corrector method, find y(0.4) from $\frac{dy}{dx} = 2e^x y$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	L2	CO4
		OR		,	
Q.10	a.	Solve by using modified Euler's method $\frac{dy}{dx} = 3x + \frac{y}{2}$, $y(0) = 1$ at $x = 0.2$.	7	L3	CO4
	b.	Using the Runge-Kutta method of 4 th order find y(0.2) given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 taking h = 0.2.	7	L3	CO4
	c.	Using modern mathematical tools write the code to find the solution of $\frac{dy}{dx} = x - y^2$ at y(0.1). Given that y(0) = 1 by Runge Kutta 4 th order.	6	L2	CO5