

18MATDIP31

Third Semester B.E. Degree Examination, June/July 2023 **Additional Mathematics - I**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Express the complex number $\frac{\text{Module-1}}{(3+i)(1-3i)}$ in the form x + iy. Also find its magnitude.

(06 Marks) b. Find the cube roots of ℓ - i and represent them in an argand plane. (07 Marks)

c. If $\vec{a}=2\hat{i}+3\hat{j}-4\hat{k}$ and $\vec{b}=8\hat{i}-4\hat{j}+\hat{k}$ then show that \vec{a} is perpendicular to \vec{b} , also find (07 Marks) $|\vec{a} \times \vec{b}|$.

a. Find the modulus and amplitude of $1 - \cos \alpha + i \sin \alpha$. (06 Marks)

b. If $\vec{a} = \hat{i} + \hat{j} - \hat{k}$; $\vec{b} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{c} = 3\hat{i} - \hat{j} - \hat{k}$, find

ii) $\vec{b} \times (\vec{a} \times \vec{c})$. i) $\vec{a} \cdot (\vec{b} \times \vec{c})$ (07 Marks)

c. Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$. (07 Marks)

a. Using Maclaurin's series, prove that $\sqrt{1+\sin 2x} = 1+x$ (06 Marks)

b. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$. (07 Marks)

(07 Marks)

Obtain the Maclaurin's expansion of the function $log(1 + e^x)$. (06 Marks)

b. If u = f(x-y, y-z, z-x), Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. (07 Marks)

(07 Marks)

Module-3

a. A particle moves along a curve C with parametric equations $x = t - \frac{t^3}{3}$, $y = t^2$ and $z = t + \frac{t^3}{3}$, where t is the time. Find the velocity and acceleration and any time t and also find their (06 Marks) magnitudes at t = 3.

b. Find div \vec{F} and Curl \vec{F} , where $\vec{F} = \nabla (x^3 + y^3 + z^3 - 3xyz)$. (07 Marks)

Find the directional derivative of $\phi = x^2 yz^3$ at (1, 1, 1) in the direction of $\hat{i} + \hat{j} + 2\hat{k}$. (07 Marks)

18MATDIP31

- a. Show that the vector field $\vec{F} = yz\hat{i} + xz\hat{j} + xy\hat{k}$ is solenoidal vector field. (06 Marks)
 - b. If $\vec{F}=(x+y+1)~\hat{i}~+~\hat{j}~-~(x+y)~\hat{k}$, show that \vec{F} , curl $\vec{F}=0$. (07 Marks)
 - c. Find the constants a, b, c such that $\vec{F} = (x + y + az) \hat{i} + (x + cy + 2z) \hat{k} + (bx + 2y z) \hat{j}$ is (07 Marks) irrotational.

Module-4

- Obtain the Reduction formula for cosⁿ x d x. (06 Marks)
 - b. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{x}} (x^2 + y^2) dy dx$ (07 Marks)
 - c. Evaluate $\iint_{0}^{\infty} (x + y + z) dx dy dz$. (07 Marks)

- (06 Marks)
 - Evaluate $\iint e^{x+y+z} dx dy dz$. (07 Marks)
 - Obtain the Reduction formula $\int \sin^m x \cos^n x dx$ (07 Marks)

- a. Solve : $(x^2 + y) dx + (y^3 + x) dy = 0$. (06 Marks)
 - b. Solve: $x \log x \frac{dy}{dx} + y = 2 \log x$. (07 Marks)
 - (07 Marks)

Solve: $y e^y dx = (y^3 + 2x e^y) dy$. Solve: $(x^2 - y^2) dx = 2xy dy$. (06 Marks) 10 (07 Marks)

Solve : $[1 + (x + y) \tan y] \frac{dy}{dx} + 1 = 0$. (07 Marks)