

18MAT31

Third Semester B.E. Degree Examination, June/July 2023

# Transform Calculus, Fourier Series and Numerical Techniques

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find  $L\left(\frac{\cos at - \cos bt}{t}\right)$ .

(06 Marks)

b. Express the function in terms of unit step function and hence find Laplace transform of

$$f(t) = \begin{cases} \sin t & 0 < t < \frac{\pi}{2} \\ \cos t & \frac{\pi}{2} < t < \pi \end{cases}$$
 (07 Marks)

c. Solve  $y''(t) + 4y'(t) + 3y(t) = e^t$ , y(0) = y'(0) = 1 by using Laplace transform method. (07 Marks)

OR

2 a. Find: (i) 
$$L^{-1}\left(\log\left(\frac{s+b}{s+a}\right)\right)$$

(ii) 
$$L^{-1} \left( \frac{s+3}{s^2 - 4s + 13} \right)$$

(06 Marks)

b. Find 
$$L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$$
 by using convolution theorem.

(07 Marks)

c. Given 
$$f(t) = \begin{cases} t & 0 < t < a \\ 2a - t & a < t < 2a \end{cases}$$

where 
$$f(t) = f(t + 2a)$$
 then show that  $L(f(t)) = \frac{1}{s^2} \tan h \left(\frac{as}{2}\right)$ 

(07 Marks)

Module-2

3 a. Obtain Fourier series for 
$$f(x) = \frac{\pi - x}{2}$$
,  $0 < x < 2\pi$ .

(06 Marks)

b. Find Fourier series for 
$$f(x) = 2x - x^2$$
,  $0 < x < 2$ .

(07 Marks)

c. Find half range Fourier cosine series for

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$

(07 Marks)

OR

4 a. Find Fourier series for 
$$f(x) = |x|, -\pi < x < \pi$$
.

(06 Marks)

b. Obtain Fourier series for 
$$f(x) = \begin{cases} 0 & -2 < x < 0 \\ 1 & 0 < x < 2 \end{cases}$$

(07 Marks)

c. Find the Fourier series upto first harmonic from the following table:

| X        | 0 | 1 | 2  | 3 | 4 | 5 |
|----------|---|---|----|---|---|---|
| y = f(x) | 4 | 8 | 15 | 7 | 6 | 2 |

(07 Marks)

### Module-3

5 a. Find Fourier transform of f(x), given:

$$f(x) = \begin{cases} 1, & |x| \le 1 \\ 0, & |x| > 1 \end{cases} \text{ and hence deduce that } \int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$
 (06 Marks)

b. Find the Fourier cosine transform of

$$f(x) = \begin{cases} 4x & 0 < x < 1 \\ 4 - x & 1 < x < 4 \\ 0 & x > 4 \end{cases}$$
 (07 Marks)

c. Solve  $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ , given  $u_0 = 0$ ,  $u_1 = 1$  using Z - transform. (07 Marks)

#### OR

- 6 a. Find the Fourier sine transform of  $e^{-|x|}$  and hence evaluate  $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx$ . (06 Marks)
  - b. Find Z-transform of  $\cos n\theta$  and  $a^n \cos n\theta$ . (07 Marks)
  - c. Obtain the inverse Z-transform of  $\frac{2z^2 + 3z}{(z+2)(z-4)}$ . (07 Marks)

## Module-4

- 7 a. Find the value of y at x = 0.1 and x = 0.2 given  $\frac{dy}{dx} = x^2y 1$ , y(0) = 1 by using Taylor's series method. (06 Marks)
  - b. Compute y(0.1), given  $\frac{dy}{dx} = \frac{y-x}{y+x}$ , y(0) = 1 taking h = 0.1, by using Runge-Kutta 4<sup>th</sup> order method.
  - c. Find the value of y at x = 0.4, given  $\frac{dy}{dx} = 2e^x y$  with initial conditions y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.04, y(0.3) = 2.09 by using Milne's predictor and corrector method. (07 Marks)

# OR CMRIT LIBRAK RANGALORE - 560 03

- 8 a. Using modified Euler's method, find the value of y at x = 0.1, given  $\frac{dy}{dx} = -xy^2$ , y(0) = 2 taking h = 0.1. (06 Marks)
  - b. Solve  $\frac{dy}{dx} = 3e^x + 2y$ , y(0) = 0 at x = 0.1 taking h = 0.1, by using Runge-Kutta 4<sup>th</sup> order method.
  - c. Find the value y at x = 0.8 given  $\frac{dy}{dx} = x y^2$  and

| X | 0 | 0.2    | 0.4    | 0.6    |
|---|---|--------|--------|--------|
| у | 0 | 0.0200 | 0.0795 | 0.1762 |

By using Adam's Bashforth predictor and corrector method. (07 Marks)

### Module-5

- 9 a. Solve  $\frac{d^2y}{dx^2} = x\left(\frac{dy}{dx}\right)^2 y^2$  for x = 0.2 given x = 0, y = 1 and  $\frac{dy}{dx} = 0$  by using Runge-Kutta method. (07 Marks)
  - b. Derive Euler's equation in the standard form  $\frac{\partial f}{\partial y} = \frac{d}{dx} \left( \frac{\partial f}{\partial y'} \right) = 0$ . (06 Marks)
  - c. Find the extremal of the function  $\int_{1}^{1} [(y')^{2} + 12xy] dx$  with y(0) = 0 and y(1) = 1. (07 Marks)

#### OR

10 a. Find the value of y at x = 0.8, given  $\frac{d^2y}{dx^2} = 2y\frac{dy}{dx}$  and

| X  | 0 | 0.2    | 0.4    | 0.6    |
|----|---|--------|--------|--------|
| У  | 1 | 0.2027 | 0.4228 | 0.6841 |
| v' | 1 | 1.041  | 1.179  | 1.468  |

CMRIT LIBRARY

by using Milne's method.

(07 Marks)

b. Prove that the shortest between two points in a plane is a straight line.

(06 Marks)

c. Find the curve on which the functional  $\int_{0}^{1} [x + y + (y')^{2}] dx$  with y(0) = 1, y(1) = 2. (07 Marks)