First/Second Semester B.E. Degree Examination, June/July 2023

Basic Electrical Engineering

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. State and explain Ohm's law, write its limitations.

(06 Marks)

b. Using Kirchhoff's law, find the potential difference between 'a' and 'b'.

- c. Define the following:
 - (i) Amplitude
 - (iii) Frequency
- (ii) Time period
- (iv) Instantaneous value for sinusoidal wave

(08 Marks)

(06 Marks)

OR

a. Derive an expression for RMS value of sinusoidal current.

(06 Marks)

- b. An alternating current i is given by; $i = 141.4 \sin 314t$. Find:
 - (i) Maximum value (iii) RMS value
- (ii) Frequency and time period (iv) The instantaneous value when 't' is 3 ms
- (06 Marks)
- c. A resistance of 'R' Ω is connected in series with a parallel circuit comprising two resisters of 12 Ω and 8 Ω respectively. The total power dissipated in the circuit is 70 W when the applied voltage is 22 Volts. Calculate value of 'R'. (08 Marks)

Module-2

- 3 a. Show that the average power consumed by pure inductor is zero. Draw the waveforms of current voltage and power. (08 Marks)
 - b. A coil having resistance of 7Ω an inductance of 31.8 mH is connected to 230 V, 50 Hz supply. Calculate: (i) Current (ii) Phase angle (iii) Power factor (iv) Power consumed (08 Marks)
 - c. Define active, reactive and apparent power.

(04 Marks)

OR

- a. In three phase delta connection, find the relation between line and phase values of currents and voltages. Also derive the equation for three phase power. (08 Marks)
 - b. A balanced star connected load of $(8 + j6)\Omega$ per phase is connected to a three phase, 230 V supply. Find line current, pf and reactive power. (06 Marks)
 - c. A resistance of 20Ω and a coil of inductance 31.8 mH are connected in parallel across 230 V, 50 Hz supply. Find: (i) Current (ii) p.f. (iii) Power consumed by circuit.

(06 Marks)

		Module-3	
5	a.	Explain construction and working of single phase transformer.	(06 Marks)
J	b.	With neat sketch, explain plate earthing.	(06 Marks)
	c.	In a certain 50 kVA transformer, the number of turns on the primary and	secondary
		windings is 834 and 58 respectively. If primary is connected to a 3300 V supply, fi	ind:
		(i) Secondary voltage	
		(ii) The primary and secondary currents	200 X F - 1 - X
		(iii) Maximum flux required if primary voltage is 3300 V and 50 Hz.	(08 Marks)
		O.D.	
		OR	(07 Marks)
6	a.	With the truth table, explain controlling lamp by three way control.	
	b.	With neat sketch, write the function of service main, meter board and distribution	(06 Marks)
	c.	In a 50 KVA transformer the iron loss is 500 Watts and full load copper loss is	
		Find the efficiency at: (i) Full load UPF (ii) $\frac{1}{2}$ load, 0.8 pf lead	(07 Marks)
_		Module-4 Will the sense of D.C. generator	(07 Marks)
7	a.	With the neat sketch, explain the construction of D.C. generator.	(06 Marks)
	b.	Derive torque equation for D.C. motor. A 6-pole lap-wound d.c. generator has 600 conductors on its armature. The flux	
	c.	0.02 Wb. Calculate:	r
		(i) The speed at which the generator must be run to generate 300 V.	
		(ii) What would be the speed if the generator were wave-wound?	(07 Marks)
		(ii) What would be the special in g	
OR OR			
8	a.	Explain the characteristics of D.C. series motor.	(06 Marks)
	b.	A 30 KW, 300V d.c. shunt generator has armature and field resistance of 0.05Ω	and 100Ω
		respectively. Calculate the generated voltages if brush drop is IV/brush.	(07 Marks)
	c.	A d.c. motor taxes an armature current of 110 A at 480 V. The armature resistance	te is 0.2Ω .
		The machine has 6-poles and the armature is lap connected with 864 conductors	3. The Hux
		per pole is 0.05 Wb. Calculate the gross torque developed by the motor.	(07 Marks)
		Module-5	
9	a.	With neat sketch, explain the construction of three phase synchronous generator.	(07 Marks)
	b.	500 H.P, 3-phase, 440 V, 50 Hz induction motor has a speed of 950 rpm on ful	l load. The
		machine has 6-poles. Calculate full load slip. Also find rotor frequency.	(06 Marks)
	c.	A 3-phase, 50 Hz, star connected alternator (synchronous generator) has 180 conditions if	L = 1 and
		phase and flux per pole is 0.0543 Wb. Find e.m.f. generated per phase and line if	(07 Marks)
		$K_d = 0.96$.	(07 Marks)
		OR BANGALORE - 560 037	
10		Explain, how a rotating magnetic field generated in 3-phase induction motor.	(07 Marks)
10	a. h	Derive e.m.f. equation of three phase synchronous generator.	(07 Marks)
	b.	A 6-pole alternator running at 1000 rpm supplied on 8-pole induction motor. Find	
	c.	speed of the motor if the slip is 2.5%.	(06 Marks)
		1	