BPHYS102/202

First/Second Semester B.E./B.Tech. Degree Examination, June/July2023 **Physics for CSE Stream**

Max. Marks: 100

BANGALORE 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

4. Constants: Speed of Light $C = 3 \times 10^8$ m/s, Boltzmam const. $K = 1.38 \times 10^{-23}$ J/K, Planck's const $h = 6.625 \times 10^{-34}$ JS, Acceleration due to gravity g = 9.8 m/s², mass of electron $m = 9.1 \times 10^{-31} \text{Kg}$

			NA	T	C
		Module – 1	M	L	C
Q.1	a.	Derive an expression for energy density interms of Einstein's coefficients	10	L2	CO1
		in Laser action.			
	b.	Explain types of optical fibers.	6	L2	CO1
	р.	Explain types of optical resist			
	c.	The ratio of population inversion of two energy levels is 1.059×10^{-30} . Find	4	L3	CO1
	C.	the wavelength of Light emitted by spontaneous emissions at 330K.			
		the wavelength of hight enhitted by spontaneous emissions as a second			*
		OR			
			8	L2	CO1
Q.2	a.	Derive an expression for Numerical aperture in an optical fiber.	0	102	COI
			0	12	CO1
	b.	Discuss construction and working of semiconductor diode Laser with	8	L2	COI
		energy level diagram.			
				-	001
	c.	The angle of acceptance of an optical fiber is 30°, when kept in air. Find the	4	L3	CO1
		angle of acceptance when it is in a medium of refractive index 1.33.			
		Module → 2			
Q.3	a.	What is wave packet? Give physical significance and properties of wave	8	L2	CO1
		function? Define group velocity.			
	b.	State and explain Heisenberg's uncertainty principle. Give its physical	8	L2	CO2
	D.	significance. Show that electron cannot exist inside the nucleus.			
		Significance. Show that electron cumot exist matter the			
		A particle of mass 0.5meV/c ² has kinetic energy 100eV. Find its de Broglie	4	L3	CO2
	c.	A particle of mass 0.5 me v/c mas kinetic energy 100c v. 1 me its de Brogne	•		
		wavelength, where 'C' is the velocity of light.			
		OR			
			8	L2	CO2
Q.4	a.	Derive an expression for Schrödinger's Time independent equation one	o	LZ	COZ
		dimensional form.			
			0	TA	000
	b.	Obtain the expression for energy eigen values using Schrodinger's time	8	L2	CO2
		independent equation.			
	c.	In a measurement of position and velocity of an electron moving with a	4	L3	CO2
		speed of 6×10^5 m/s, calculate highest accuracy with which its position			
		could be determined, if the inherent error in the measurement of its velocity			
		is 0.01% for the speed stated.			
		15 0.01 /0 tolettle speed stated.			
		1.0f2			

		Module – 3			
Q.5	a.	Explain single qubit gate and multiple qubit gate with example for each.	8	L2	CO2
	b.	Discuss CNOT gate and its operation on four different input states.	8	L2	CO2
	c.	Given $A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ prove that $A^+ = A$.	4	L3	CO2
		OR			
Q.6	a.	Elucidate the differences between classical computing and Quantum computing.	8	L2	CO2
	b.	Discuss the working of phase gate mentioning its matrix representation and truth table.	8	L2	CO2
	c.	Find the inner product of states 11\rangle and 10\rangle and draw conclusionon the result.	4	L3	CO2
		Module – 4			
Q.7	a.	Distinguish between Type – I and Type – II super conductors.	8	L2	CO3
	b.	Discuss the effect of temperature and impurity on electrical resistivity of conductors and hence explain for superconductors.	8	L2	CO3
	c.	In a diffraction grating experiment the laser light undergoes second order diffraction, if the distance between screen and grating is 20cm, and average distance of 2^{nd} order spot 2.7cm grating constant 1×10^{-5} m, calculate the wavelength of laser light.	4	L3	CO5
		OR			
Q.8	a.	Explain B.C.S theory of superconductivity.	7	L2	CO1
	b.	Define Fermi energy level. Discuss various energy states by the electrons at $T = O K$ and $T > O K$ on the basis of fermifactor.	8	L2	CO1
	c.	Calculate the acceptance angle and numerical aperture of given optical fiber having diameter of spot is 2.6cm and distance between screen and optical fiber 3.0cm.	5	L2	CO1
		Module – 5			
Q.9	a.	Elucidate the importance of size and scale and weight and strength in animations.	8	L2	CO4
	b.	Discuss modeling probability of proton decay.	8	L2	CO4
	c.	The number of particles emitted per second by a random radioactive source has a Poisson's distribution with $\lambda=4$. Calculate the probability of $P(X=0)$ and $P(X=1)$	4	L3	CO4
		OR	•	T 4	004
Q.10	a.	Discuss timing in Linear motion, uniform motion, show in and flow out.	8	L2	CO4
	b.	Discuss salient features of Normal distribution using Bell curves.	8	L2	CO4
	c.	A slowing in object in an animation has a first frame distance 0.5m and first slow in frame 0.35m. Calculate the base distance and the number of frames in sequence.	4	L3	CO4
		***** CMRIT LIBRARY			

CMRIT LIBRARY RANGALORE - 560 037