CBCS SCHEME

15MAT21

Second Semester B.E. Degree Examination, June/July 2023

Engineering Mathematics – II

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Solve
$$(D^4 + 4D^3 - 5D^2 - 36D - 36)$$
 y = 0

(05 Marks) (05 Marks)

b. Solve
$$(D^3 + 4D) y = \sin 2x$$

(06 Marks)

c. Solve
$$y'' + 2y' + y = x^2 + 2x$$
 by the method of undetermined coefficients.

2 a. Solve
$$\frac{d^2y}{dx^2} + 4y = 1 + x^2$$

Time 3 hrs

(05 Marks)

b. Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = e^x \sin x$$

(05 Marks)

c. Solve by the method of variation of parameters
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$$

(06 Marks)

Module-2

3 a. Solve
$$x^2y'' + 2xy' - 2y = (x+1)^2$$

(06 Marks)

b. Solve
$$x \left(\frac{dy}{dx}\right)^2 + (y-x)\frac{dy}{dx} - y = 0$$

(05 Marks)

c. Solve
$$y = 2px + tan^{-1}(xp^2)$$

(05 Marks)

4 a. Solve
$$(1 + x)^2 y'' + (1 + x)y' + y = 2\sin[\log(1 + x)]$$

b. Solve $2xyp = 4y^2 + p^3$

(06 Marks)

b. Solve
$$2xyp = 4y^2 + p^3$$

(05 Marks)

c. Find the general and singular solutions of
$$y = xp + Sin^{-1}p$$

(05 Marks)

Module-3

a. Form the partial differential equation from the following equation by eliminating arbitrary constant a and b

 $(x-a)^2 + (y-b)^2 + z^2 = 16$

(05 Marks)

b. Solve
$$\log \left(\frac{\partial^2 z}{\partial x \partial y} \right) = x + y$$

(06 Marks)

c. Derive one dimensional heat equation in the form
$$\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$$
 (05 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

- Form partial differential equations from the following relation by eliminating arbitrary functions z = f(x + ay) + g(x - ay)
 - Solve $\frac{\partial^2 z}{\partial x^2} 6\frac{\partial z}{\partial x} + 9z = 0$ given that z = 0, $\frac{\partial z}{\partial x} = e^y$ when x = 0(05 Marks)
 - Find the various possible solution of wave equation $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ by using the method of c. (06 Marks) separation of variables.

Evaluate by changing the order of integration

$$\iint_{0}^{\infty} \frac{e^{-y}}{y} dy dx$$
 (05 Marks)

- b. Find the area bounded by the parabola $y = x^2$ and the line y (05 Marks)
- c. Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ (06 Marks)

- Evaluate $\iint_{0}^{1} \iint_{0}^{2} x^{2}yz dxdydz$ (05 Marks)
 - Evaluate $\int_{0}^{a^{\sqrt{a^2-x^2}}} \sqrt{x^2+y^2} dydx$ by changing to polar coordinates. (05 Marks)
 - c. Prove that $\int_{0}^{\infty} x^{2} e^{-x^{4}} dx \times \int_{0}^{\infty} e^{-x^{4}} dx = \frac{\pi}{8\sqrt{2}}$ (06 Marks)

- a. Find L[t e^{-t} Sin 3t] (05 Marks)
 - b. If $f(t) =\begin{cases} 1 & 0 < t < a \\ -1 & a < t < 2a \end{cases}$ and f(t + 2a) = f(t) then find L[f(t)] (05 Marks)
 - Using Laplace Transform method solve

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = e^{2t} \text{ with } y(0) = 0 \text{ and } y'(0) = 1$$
(06 Marks)

- a. Express $f(t) = \begin{cases} t^2 & \text{for } 0 < t \le 2 \\ 0 & \text{for } t > 2 \end{cases}$ in terms of unit step function and hence find L[f(t)].
 - (05 Marks)
 - b. Find $L^{-1} \left[\frac{s+2}{s^2-4s+13} \right]$ (05 Marks)
 - c. Find: i) $L^{-1} \left[log \left(\frac{s+a}{s+b} \right) \right]$ ii) $L^{-1} \left[\frac{e^s}{s+1} \right]$ (06 Marks)