MAKE-UP EXAM

BESCK104B/BESCKB104 USN First Semester B.E./B.Tech Degree Examination, Nov./Dec. 2023 Introduction to Electrical Engineering Time: 3 hrs. Max. Marks: 100

BANGANote: J. Answer any FIVE full questions, choosing ONE full question from each module.

2.VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

- , -		Module – 1	M	L	С
Q.1	a.	What are conventional and non conventional energy resources?	6	L1	CO ₁
	b.	State and explain Kirchoff's laws.	6	L2	CO
	c.	For the network of single parallel circuit shown in Fig.Q1(c) find: i) Current in all the resistors ii) Value of unknown resistance 'X'.	8	L3	CO
		Fig.Q1(c)			
		OR			
Q.2	a.	What are the different methods of electrical power generation? Explain with a neat block diagram, nuclear power generation method.	7	L1	CO
	b.	What is Ohm's Law? What are its limitations?	5	L1	CO
	c.	Find the current flowing in each branch for the network shown in Fig.Q2(c). 80A 120K Fig.Q2(c)	8	L3	CO
		Module – 2		1	T
Q.3	a.	Explain the following terms: i) Time period ii) Frequency iii) Amplitude with a neat wave form.	6	L1	CO
	b.	Obtain an expression for R.M.S value in terms of maximum value of an alternating quantity.	6	L2	CO
	c.	A resistor of 6Ω is connected in series with an inductor of inductance 25.46mH across a 220V, 50Hz AC supply find: i) Impedance ii) Power factor iii) Real and reactive powers.	8	L3	CO

		BESCK104B	DE	SCIN	D104
11		OR			
Q.4	a.	What are the advantages of three phase over single phase system.	6	L2	CO3
	b.	Obtain relationship between line and phase voltages in a star connected system.	6	L2	CO2
	c.	Given $V = 200 \sin 377t$ volts and	8	L2	CO3
		$i = 8 \sin (377t - 30^{\circ})$ for an AC circuit.			
	79	Find: i) power factor			
		ii) true power			
		iii) real and reactive power.			
		Module – 3			
Q.5	a.	Explain different parts of a DC generator.	6	L2	CO2
	b.	With visual notations obtain torque equation of a DC motor.	6	L2	CO2
	c.	A 6-pole wave connected DC generator has a total flux of 150 MWb. If it	8	L3	CO3
		runs at a speed of 1000 rpm, find the emf generated? At what speed should			
		it be driven to generate an emf of 300V if is lap connected. Take armature	2		
		conductors to be 1200.			
		OR			
Q.6	a.	Obtain an expression for emf generated in a DC generator.	6	L2	CO ₂
Q.U	b.	Explain why? i) A dc series motor should not be started without load on it.	6	L2	CO2
	~.	ii) A shunt motor is called a constant speed motor.			
	c.	A 500V shunt motor having 4 poles and wave connected winding with 492	8	L3	CO3
	· ·	arm conductors takes a full load current of 20A. The flux/pde is 0.05wb,			
		arm and shunt field resistances are 0.1Ω and 250Ω respectively. Find the			
		speed and developed torque.			
		Module – 4			
0.7	0	With usual notations obtain emf equation of a transformer.	6	L2	CO2
Q.7	a.		6	L2	CO2
	b.	Explain the concept of rotating magnetic field.	8		
	c.	A 4-pole, 3-phase, induction motor operates from a supply whose	0	L3	CO3
	00000	frequency is 50Hz. Calculate:			
		i) The speed at which magnetic field rotates			
		ii) Motor speed at a slip of 4%	DV		
		iii) Frequency of rotor current when slip is 3% CMRIT LIBRA	037		
	L	iv) The frequency of rotor currents at stand still. RANGALORE - 56	, w		
0.0	T	OR OR		TA	604
Q.8	a.	Explain different losses that occur in a transformer.	6	L2	CO4
	b.	Differentiate between slip ring and squirrel cage rotors.	6	L2	CO4
	c.	A single phase transformer has 1000 turns on its primary winding and 400	8	L3	CO4
		turns on secondary winding. AC supply if 1250V, 50Hz is supplied to			
		primary with secondary winding open. Find:			
		i) Secondary emf induced			
		ii) Max value of flux density if the effective cross sectional area is 60cm ² .			
	_	Module – 5			
Q.9	a.	Explain two way and three control of a load with neat wiring diagram.	6	L2	CO5
	b.	What is the unit of energy consumed? Explain two part tariff system.	8	L2	CO5
	c.	What is earthing? Explain any one type of earthing with a neat diagram. OR	6	L2	CO5
Q.10	a.	What are the precautions to be taken to avoid electric shock.	6	L2	CO5
V.10	b.	Differentiate between fuse and miniature circuit breaker.	8	L2	CO5
	c.	A consumer has a maximum demand of 200KW at 40% load factor. If the	6	L3	CO5
	C.	tariff is 100 per KWh of maximum demand plus 10 paise per KWh, find the	U	ШЭ	003
	,	monthly charges (30 days).			
		monthly charges (50 days).			

* * * * *