USN

e EARS .

VTU Examination —-March 2023
Solution

Sub: | UNIX Programming ?:lcj)?je- 18CS56

Branch:

ISE

Exam
Date:

09/03/2023 | Duration: | 3 Hrs Max Marks: | 100 Sem V

Answer any FIVE FULL Questions

MARKS

CO

Compare internal commands and external commends, files and processes.

INTERNAL COMMAND:

These are a set of command built in in a Shell. The shell will
interpret that command and will execute the result for us. It will
not create a child process to execute that command. Examples of
Internal command are cd ,echo etc.

EXTERNAL COMMANDS:

The external commands are stored as files. The shell will need to
create an child process and then execute an command. The
execution time of these command would be a bit more than the
external commands. Examples of external command are Is, grep,
etc.

O File have spaces on disk (inactive state) and Processes have life in system.

O Program under execution is a process.

O A File is a container for storing information.

O All file attributes are kept in a separate area of the hard disk,accessible only by the
kernel.

[06]

Co1

Explain all the features of UNIX operating system.
1. Multiuser system

From the fundamental point of view UNIX is a multiprogramming system ; this can
happen in 2 ways

e Multiple users can run a system

e Assingle user can also run Multiple jobs
2 .Multitasking System

In a Multitasking environment, a user sees one job running in the foreground & the

rest are running in the background.
3. The Building Block Approach

The designers never attempted to pack too many features into a few tools. Instead they
developed a few hundred commands each of which performed one simple job only.
E.g: Is|wc

4. UNIX Tool Kit

5. Pattern Matching e.g : Is chap*, Is chap+ , Is chap?

6. Programming facility

7. Documentation: - man command, which remains the most important reference for
commands and their configuration files.
Internet, FAQ in net, articles published in magazines & Journals and lecturer notes
available by universities on their website.

[09]

Co1

©

Write the output for the following commands:

1) cal 10 2021

Prints the Calendar of October 2021.

2) date +"%D%T"

Prints present date in the format of mm/dd/yy with time in 24hrs format.

3) type echo

Prints the output as echo is a shell builtin.

4) passwd

changes the old password to new password.

5) who

prints information about currently logged in user on to system.

[05]

Co1

OR

2(a)

o

o

o

Explain the different categories of files with examples.

An ﬂrdinar}’ ﬁlﬁ can be either a
text file
binary file.

A text file contains only printable characters and you can view
and edit them.

Ex: All C and Java program sources, shell scripts are text files.

Every line of a text file 1s terminated with the newline character
.Also known as linefeed(LF).

> A binary file contains both printable and nonprintable characters

that cover the entire ASCII range(0 to 255).

> The object code and executables that vou produce by compiling C

programs are binary files.

Ex: Picture. Sound and video files are also binary files.

A dil‘E{:tﬂl‘}’ file contains one entry for every file
and subdirectory that it houses. (mkdir command)(rmdir
command)

© Each entry has two components

Filename

unique dentification number of the file or directory (called the
inode number).

- All the operations on the devices are performed

by reading or writing the file representing the
device.

It 1s advantageous to treat devices as files as
some of the commands used to access an
ordinary file can be used with device files also.

-Devwvice filenames are found in a single directory

structure, /dev.

- A device file is not really a stream of characters.

[06]

Co1

(b)

Describe the parent child relationship in UNIX file system and differentiate absolute
pathnames with relative path names.

All files in UNIX are “related” to one another.

File system: Collection of all of these related
files.

Organized in hierarchical tree structure.
root directory (/).

= Absolute Pathname
= A pathname that begins from root
= The pathname begins with a slash
e.g. /home/username/unx122
m Relative Pathname

= A pathname that is "relative" to the location of the
current or "working" directory

= Use cd to set the current directory, pwd to display
the working (current) directory
e.d. unx122
(assuming we are already in /home/username)

[06]

COo1

(©

Write the description for the following commands:

i) mkdir college college/ISE college/CSE

creates a directory college and two sub-directories as ISE and CSE in College directory.
i)mV f1.C f2.C £3.C cprogs

rename the files f1.c f2.c f3.c to cprogs

iii)if my pwd is /home/ravi/progs then Cd ../..

prompt will be in home directory

iv)Is —I | we-I

lists all the files with 7 attributes and prints the line count of each file.
V) cp f1 f2 £3 files

copies files f1 2 3 to files

Vi) rm —i chapl

remove the file chapl in interactive manner.

Vii) cat >> test.txt

creating the output redirection contents into test.txt file.

viii) rmdir college/ISE

removes the sub directory ISE from college directory.

[08]

Co1

3

Explain all the options of Is commands with examples.

olist of all filenames in the current directory.

olt displays the files by using ASCII collating
sequence

o Syntax: Is [options] [arguments |
o Ex:

§1s -1
total 2

-rw-r--r-- 1 Administrator None 16 Sep 23 11:00 geek.txt
-rw-r--r-- 1 Administrator None 110 Sep 25 14:50 input.txt

1.File Type and Permissions : FIRST Column

> It indicates the type and permissions associated with the each file .
» The first character represents the “ file type

¢ — “ represents the ordinary file

“ d ‘represents the directory file

“a/b/ c ‘represents the device file

» Remaining character in first column represents the read , write
and execute permission to the owner(USER) , group and others .

2.LINKS : SECOND COLUMN

» This indicates the number of links associated with a file.

»This is actually the number of filenames maintained by the system
for the single copy of a file on disk .

3. OWNERSHIP : THIRD column
» when we create the file , automatically we are the owner off(this
file.

4.Group ownership:4"" column represents the group
owner of the file .

5.File Size: 5" column is the amount of data it contains
(1.e the total number of characters it has stored in it).

6.L.ast Modification Time : 6" 7% 8t columns shows
the last modification time of the file.

A file 1s said to be modified only if its content get
changed , if we change the ownership or permission the
modification time will remain unchanged .

7.File name: last column indicates the filenames
arranged in ASCII collating sequence .

[06]

Cco2

(b)

Consider a file test.txt with default permissions as -rw-r--r--, grant execute permission to owner,
write and execute permission to group members and execute permission to others using both
relative and absolute approaches.

Relative :$chmod u+x g+wx o+x test.txt

Absolute :$chmod 751 test.txt

[04]

Cco2

©

Write the output for the following commands.
1) cp ???? progs
copies to progs directory all files with 4 character names.
2) rm ‘chap*’
removes all files of chap
3) mV * [IC][!P][!P] progs
moves all files to progs except with the extension .cpp
4) cat *.txt | wc -C
prints the content of all the files with the extension .txt along with the character count of]
files.
5) cp chap\ [0-1\]
copies the files chap contents except with digit 0 to 1.

[05]

CO2

(d)

Explain the grep command with all its options.
v'grep scans its input for a pattern displays lines containing the
pattern, the line numbers or filenames where the pattern occurs.

Sgrep options pattern filename(s)
Option Significance
-i Ignores case for matching
-V Doesn't display lines matching expression
-n Displays line numbers along with lines
-C Displays count of number of occurrences
-l Displays list of filenames only
-e exp Matches multiple patterns
-f filename Takes patterns from file, one per line
-E Treats patterns as an ERE
-F Matches multiple fixed strings

$ grep "sales” emp.lst § grep 'jai sharma’ emp.lst
$ grep -i 'agarwal' emp.lst
$ grep -c 'director’ emp.lst
$ grep -1 "marketing’ *.lst
$ grep -e "Agarwal" -e "aggarwal" -e "agrawal" emp.lIst

[05]

CO2

OR

4 (a)

Write a program to read pattern and filename from the user and search the pattern in the
given file.
#1/bin/bash

read -p "Enter file name : " filename

[05]

Cco2

while read line
do

echo $line

done < $filename

(b) \Write the output for the following commands.
i) grep "Anil"” std.Ist || echo "pattern not found”
searches for pattern Anil from std.Ist otherwise prints as pattern not found
i) test $x -gt By
Compares two strings X is greater than y and tests for condition.
iii) [-Z $stg]
test to check whether a string is empty. [05] | CO2
iv) [-r $file]
checks if the file is readable.
V) [!-n $stg]
Checks if the given string stg operand size is not non-zero; if it is nonzero length, then it
returns true otherwise false
(c) [Explain all the looping statements with syntax. [06] | CO2
Form1 Form2 Form3
if command is successful if command is successful if command successful
then then then
execute commands execute commands execute commands
else fi elif command is successful
execute commands then...
fi else...
fi
forvariable nlist ~ €AS€ EXPTESSION IN while condition is true
do Patternl) commandl;;
Pattern2) d2; do
Commands attern2) commandz2 ;;
done Pattern3) command3 ;; Commands
= done
esac
(d) Write a shell script to read multiple patterns from the command line and search these

patterns in the given file which is also read from command line by using shift command.
[Ex. Command line arguments as below #>script.sh patl pat2 pat3, pat4 pat5].

#1/bin/sh

echo "Script Name: $0"

echo "First Parameter of the script is $1" [04] | CO2
echo "The second Parameter is $2"

echo "The complete list of arguments is $@"
echo "Total Number of Parameters: $#"
echo "The process ID is $$"

echo "Exit code for the script: $?"

5 ()

Explain the General File API's open(), read(), write(), Iseek() with their prototype.
This API is used by a process to open a file for data access.

open

#include < sys/ftypes.h>
Hinclude =unistd.h>
#Hinclude <fcntl.h=>

int open{const char "poth_name, int access_mode, mode_t permission);

» The first argument path_name is the path name of a file.
¥ Second argument Access mode flags:

O_RDOMNLY
O_WRONLY
O_RDWR
O_APPEND
O_CREAT

O_EXCL

O_TRUNC
#include <unistd.h>
Hinclude<sys/types.h>

ssize_t read(int fd, void *buff, size_t size);

Open the file for read only.

Open the file for write anly

Open the file for read and write
Appends data to the end of the file.
Create the file if it does not exist.

Used with O_CREAT, if the file exists, the call fails. The
test fo;' existence and the creation if the file does
not exists.

}flthe_ fil:e exits, discards the file contents and sets the
Hinclude <sysftypes.h>

#include <unistd.h>

#finclude <sys/types.h>
#include <unistd.h>

ssize_t write (int fdesc, const void* buf, size_t size);

#H#include<unistd.h>
#include<sys/types.h>
#Hinclude<stdio.h>

int main()

{

int n, fd;

char buff[S0];

printf("Enter text to write in the file:\n");
n= read(O, buff, SO);

fd=open('file",O_CREAT | O_RDWR, 0777);

write(fd, buff, n);
write(l1, buff, n);

close(fd);
return O;

[10]

off_t Iseek (int fdesc, off_t pos, int whence);

CO3

(b)

Describe the memory layout of a C program with a diagram and explain
allocation API's with their prototypes.

memory

A C program has been composed of the following pieces:
QText segment: The machine instructions that the CPU executes,

Qinitialized data segment: usually called simply the data segment, containing variables that
are specifically initialized in the program.

For example, the C declaration
int maxcount = 99;

QUninitialized data segment; Data in this segment is initialized by the kernel to arithmetic 0
or null pointers before the program starts executing.

For example, the C declaration
long sum[1000];

QStack: where automatic variables are stored, along with information that is saved each
time a function is called

QHeap: where dynamic memory allocation usually takes place. Historically, the heap has
been located between the uninitialized data and the stack.

higlh address command-line argumoents

and environment variables

stack

hcap

uninitialized data initialized to
(bss) zoro by exec
initializoed data read from

programm file

text by exec

Iow address ¥

ISO C specifies three functions for memory allocation:

1. malloc: Which allocates a specified number of bytes of memory. The initial value of the
memory is indeterminate.

2. calloc: Which allocates space for a specified number of objects of a specified size. The
space is initialized to all 0 bits.

3. realloc: Which increases or decreases the size of a previously allocated area.
#include <stdlib.h>
void *malloc(size_t size);
void *calloc(size_t nobj, size_t size);
void *realloc(void *ptr, size_t newsize);
All three return: non-null pointer if OK, NULL on error

void free(void *ptr);

[10]

(S{OX]

OR

6 (a)

Explain setimp and longimp, getrlimit and setrlimit function with examples.

#include <setjmp.h>
int setjmp(jmp_buf env);

Returns: 0 if called directly, nonzero if returning from a call to longjmp
void longjmp(jmp_buf env, int val);

The env variable(the first argument) records the necessary information
needed to continue execution.

The env is of the jmp_buf defined in <setjmp.h> file, it contains the task.

#include<unistd.h> void cmmd_add(void)

#include <setjmp.h> {

#define TOK_ADD 5 int token;
jmp_buf jmpbuffer; token = get_token();

int main(void) if (token < 0)

{ longjmp(jmpbuffer, 1);
char line[MAXLINE]; }

if (setjmp(jmpbuffer) != 0)

printf("error"”);

while (fgets(line, MAXLINE, stdin) != NULL)
do_line(line); exit(0);

}

v'Every process has a set of resource limits, some of which can be queried and
changed by the getrlimit and setrlimit functions.

\ , Resource argument takes one of
finclude <sys/resource,h> " thefollowing values:
int getrlimit{int resource, struct rlimit *rlptr); 1. RUIMIT_CORE; The maximum
size in bytes of a core file,
int setrlimit(int resource, const struct rlimit *rlptr); 2. RUMIT_CPU: The maximum
Both return: 0 if OK, nonzero on error

Ll

amount of CPU time in
seconds,

3. RUMIT_DATA: The maximum
size in bytes of the data

struct rlimit segment,
{ 4, RLIMIT_NOFILE: The maximum
number of files per process.

tlim_t rlim_cur; /* soft limit: current limit */
tlim_t rlim_max; /* hard limit: maximum value for rlim_cur */

[10]

(G{OX]

(b)

Describe how the process is created by using fork() and vfork(). List out the inherited from
the parent when the child process is created?

v'A new process is created by UNIX kernel is when an existing process calls
the fork function.

#include <sys/types.h>
#include <unistd.h>
pid_t fork (void);

v'The new process created by fork is called child process

v'The function is called once but returns twice

v'The return value in the child is 0

v'The return value in parent is the process ID of the new child
v'The child is a copy of parent

* Real user ID, group ID, effective user ID, effective group ID
* Supplementary group ID

* Process group ID

+ Session |ID

* Controlling terminal

set-user-1D and set-group-ID

Current working directory

Root directory

File mode creation mask

* Signal mask and dispositions

* The close-on-exec flag for any open file descriptors
* Environment

» Attached shared memory segments

* Resource limits

#include <stdio.h>
#include <unistd.h>

*

*

int main()

int id;
printf("Hello, WorldI\n");

id=fork();
if(id>0) /*parent process™/
{

printf("This is parent section [Process id: 2ed].\n", getpid()):;
3
else if(id==0) /*child process*/
{

printf("fork created [Process id: 26d].\n", getpid()):;
printf("fork parent process id: 2¢d. \n", getppid());

else
printf{("fork creation failed!!!\n"); /*fork creation faile*/

return O;

[10]

CO3

Creates neww process and bifock the parent.
#HFinclude <sys/types_.hh>
#Finclude <unistd.h>
Pid_ t vfork (void):

Hinclude <=stdio.h>
Hinclude <sunistd_h>

int main()

4
printf("Before vfork\n");:
wvfork():
printf("After vfork\\mn"):
returm O

>

7(a)

Explain the implementation of system function using fork(), exec(), wait() API's.
#include <stdlib.h>

int system(const char *cmdslring);

» If cmdstring is a null pointer, system returns nonzero only if a
command processor 1s available.

» System 1s implemented by calling fork, exec, and waitpid,
there are three types of return values.

1. If either the fork fails or waitpid returns an error other than
EINTR, system returns —1 with errno set to indicate the error.

2. If the exec fails, implying that the shell can’t be executed, the
return value is as if the shell had executed exit.

3. Otherwise, all three functions—fork, exec, and waitpid
succeed, and the return value from system is the termination
status of the shell, in the format specified for waitpid.

Fincludea zgya /S wait.h>

Finclude Zgrrno.h>

Finclude =unistd.h>

int

system|const char *cmdstring) F* wyersion without signal handling =/

i{
pid t pid;

int status;
if (ocmdstring == HULL)
return{l); A* always a command processor with UNIX +/

if ((pid = fork({)) < 03 {

status = -1; A* probably out of processes *f
} else if (pid == 0) { S* oohild */
execl{"/bin/sh", "sh", "-¢", cmdstring, {(char *)0);
_exit(1Z7); A* execl aerror */
} else { £* parent */
while (waitpid(pid, &status, 0) < 0) {
if (errnoc != EINTR) {
status = -1; J* error other than EINTR from waitpid{) */
break;

}
}

return{status);

[10]

CO4

(b)

Define pipes, write a program to send data from parent to child, using pipe API and also
list its limitations.

¥

Pipes are the oldest form of UNIX System IPC. Pipes have two limitations.
Historically, they have been half duplex (i.e., data flows in only one direction).
Pipes can be used only between processes that have a common ancestor.
Normally, a pipe is created by a process, that process calls fork, and the pipe is used
between the parent and the child.

A pipe is created by calling the pipe function.

#include <unistd.h>

int pipe(int filedes[2]);

Returns: 0 if OK, 1 on error.

» Two file descriptors are returned through the filedes argument:

¢ filedes[0] is open for reading and

¥ ¥V ¥

Y

e filedes[1] is open for writing.
The output of filedes[1] is the input for filedes[0].

#HFincluoude "apoae._lhh*

AZmt
main (wroid)
i
int T
int £4[2] ;
rid_ t eid;
char Line [MAXLIMNE]

if (pipe(£d) -= 0)
err sys{"pipe errrrox™) ;

iFf {{pid = Fork{)) = 0O) ({
err ays{"fork errox™) ;
} else if (pid = 0O) { S* p = W)

close (£A[0])
write{fd[1l], "hello world\ o™, 122) ;

} elsa { S* child */
close {(EALL])
m = read{(fd[0] ., l1limne, MAXTINE) ;

write (STDOUL FILENCO, line, n) ;

3}
exdi e (0)

parent chnua

£4Il1l] £4[o0]

kernel

[10]

CO4

OR

8 (a)

Define semaphores and explain how the IPC is implemented using various semaphore
API's.

> A semaphore is a counter used to provide access to a

shared data object for multiple processes.

> To obtain a shared resource, a process needs to do the

following:

1. Test the semaphore that controls the resource.

2. 1If the value of the semaphore is positive, the process
can use the resource. In this case, the process
decrements the semaphore value by 1, indicating that it
has used one unit of the resource.

3. Otherwise, i1f the walue of the semaphore is 0., the
process goes to sleep until the semaphore walue is
greater than 0. When the process wakes up, it returns te.
step 1. y

#include <sys/sem.h>
int semget(key_t Key, int nsems, int flag);
Returns: semaphore ID if OK, | on error.

#include <sys/sem.h>
int semetl(int semid, int semnum, in emd.... /* union semun arg */);

#include <sys/sem.h>
int semop(int semid, struct sembuf semoparray[], size_t nops);
Returns: 01f OK, | on error.

[10]

CO4

(b)

Explain the implementation of shared memory IPC mechanism with all its API's and
their prototypes.

[1 Shared memory allows two or more processes to share a given
region of memory.

[] This is the fastest form of IPC, because the data does not need to
be copied between the client and the server.

[The only trick in using shared memory is synchronizing access
to a given region among multiple processes.

[If the server is placing data into a shared memeory region, the

client shouldn’t try to access the data until the server is done.

Once a shared memory segment has been created, a process attaches it to its address
space by calling shmat,
#include <sys/shm.h>
void *shmat(int shmid, const void *addr, int flag);
Returns: pointer to shared memory segment if OK, =1 on error

7 The SHM_RND command stands for “‘round.”” SHMLBA stands for “‘low boundary
address multiple™ and is always a power of 2.
#include <sys/shm.h>

int shmdt(const void *addr);
Returns: 0 1f OK, =1 on error

[10]

CO4

» The first function called is usually shmget, to obtain a shared memory identifier.
#include <sys/shm.h>
int shmget(key_t key, size_t size, int flag);
Returns: shared memory ID if OK, =1 on error

» When a new segment is created, the following members of the shmid_ds structure are
initialized.

¢ The ipc_perm structure is initialized. The mode member of this structure is set to the
corresponding permission bits of flag.

o shm_Ipid, shm_nattch, shm_atime, and shm_dtime are all set to 0.

o shm_ctime is set to the current time.

» shm_segsz is set to the size requested.

» The shmetl function is the catchall for various shared memory operations.
#include <sys/shm.h>
int shmetl(int shmid, int cind, struct shmid_ds *buf);
Returns: 01f OK, =1 on error

9(a)

Define signal and list the actions taken by a process when the signal is raised. Explain
the signal API signal (), sigset (), sigaction ().

v'Signals are triggered by events and are posted on a process to notify
it that something has happened and requires some action.

v'Signals can be generated from a process, a user, or the UNIX kernel.

Example:-
a. A process performs a divide by zero or dereferences a NULL pointer.

b. A user hits <Delete> or <Ctrl-C> key at the keyboard.

VThe process can react to signals in one of the three ways

3, Accept the default action of the signal = most signals terminate the
Drocess,

b. Ignore the signal,

¢. Invoke & user defined function = The function is called signal hander
routine and the signal is said to be caught when the function is called

[10]

CO5

v The sigaction APl is a replacement for the signal APl in the latest UNIX and POSIX systems.

V; Ehelsig?'c‘tion APl is called by a process to set up a signal handling method for each signal it wants to
eal with.

v sigaction API returns the previous signal handling method for a given signal.
The sigaction API prototype is:
#include <signal.h>
int sigaction(int signal_num, struct sigaction *action, struct sigaction *old_action);
The struct sigaction data type is defined in the <signal.h> header as:
struct sigaction
{
void (*sa_handler)(int);
sigset_t sa_mask;
int sa_flag;
IR
The sa_handler field can be set to SIG_IGN, SIG_DFL, or a user defined signal handler function.

The sa_mask field specifies additional signals that process wishes to block when it is handling
signal_num signal.

(b) [Explain how kill API is used for sending a signal to a process and explain the
implementation of sleep API using alarm API. [10]

* Kill API is used to kill a suspended or hanging process or process group.

CO5

* APl is signal transporter and can send specified signals to specified
processes in UNIX.

* The sender and recipient processes must be related such that either
sender process real or effective user ID matches that of the recipient
process, or the sender has superuser privileges.

* For example, a parent and child process can send signals to each other
via the kill API.

* The kill API is defined in most UNIX system and is a POSIX.1 standard.
The function prototype is as:

#include <signal.h>

int kill pid_t pid, int signal_num);

The sig_num argument is the integer value of a signal to be sent to one or
more processes designated by pid.

The following C program illustrates
the implementation of the UNIX kill
command.

#include <iostream.h>

#include <unistd.h>

#include <string.h>

#include <signal.h>

int main (int argc, char *argv(])
{
int pid, sig = SIGTERM;
if (arge == 3) {

if (sscanf(argv[1], “%d”, &sig) != 1) {
//get signal number

perror<< “Invalid number:” << argv(1]
<< endl;

return-1;

}

argv++; arge--;

}

while (--argc > 0)

if (sscanf(*++argy, “%d”, &pid) == 1) {
//get process ID

if (kil (pid, sig) ==-1)
perror(“kill");
}else

o
perror << “Invalid pid:” << argv[0] <<
endl;

return 0;

* The alarm API can be called by a process to request the kernel to send
the SIGALRM signal after a certain number of real clock seconds.

* The alarm APl is defined in most UNIX systems and is a POSIX.1

standard.

* The function prototype of the APl is as:

#include <signal.h>

unsigned int alarm (unsigned int time_interval);

* The time_interval argument is the number of CPU seconds elapse
time, after which the kernel will send the SIGALRM signal to the

calling process.

The alarrm APl can be used to iMmplement thhe sileep APIL.

Finclude <signal_.h>
Finclude <stdio.h>
Finclude <unistd._.h>
void wakeup() {3

unsigned int sleep (unsigned int tirmer)

{

Struct sigaction action;

action.sa__handler = wakeup:;
action.sa__flags = O;

sigemptyset (Eaction.sa_mask):

if { sigaction (SIGALRMNM, E&Eaction, O) == -1)

€

perror{“sigaction™);
returm -1

3
{(void)alarm(tiTmer);
{(void)pause():

3

OR

10 (a) |Define the Daemon process. Explain all the coding rules to be followed while coding at
daemon process. [10] | CO5
* A daemon (also known as background processes) is a Linux or UNIX
program that runs in the background. Almost all daemons have
names that end with the letter "d".
* Daemons are processes that live for a long time.
* They are often started when the computer system is started and
terminate only when the system is shut down.
* They do not have a controlling terminal; so we say that they run in
the background.
1. The first thing to do is call umask to set the file mode creation mask to 0.
2. Call fork and have the parent exit.
3. Call setsid to create a new session.
4. Change the current working directory to the root directory.
5. Unneeded file descriptors should be closed.
6. Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any
library routines that try to read from standard input or write to standard
output or standard error will have no effect.
(b) |Write a note on interval timer.
= The interval timer can be used to schedule a process to do
some tasks at a fixed time interval, to time the execution of
some operations, or to limit the time allowed for the
execution of some tasks.
» The following program illustrates how to set up a real-time
clock interval timer using the alarm API:
#include<stdio.h>
#include<unistd.h>
#include<signal.h>
[05] CO5

#define INTERVAL S5
void callme(int sig_no)

{
alarm(INTERWVAL); /*do scheduled tasks*/ }

mani()

{

struct sigaction action; sigemptyset(&action.sa__mask);
action.sa__handler=(void(*)()) callme;
action.sa_flags=SA__RESTART;
if(sigaction(SIGALARM,&action,0)==-1) { perror(“sigaction”);
return 1; } if(alarm(INTERVAL)==-1)

perror{(“alarm?”™);

else while(1)

{

/*do normal operation*/

}

return O;

}

Explain the BSD syslog facility for handling Daemons error messages. 05 | cos
05

One problem a daemon has is how to handle error messages. It can not
simply write to standard error, since it should not have a controlling
terminal.

There are three ways to generate log messages:

1. Kernel routines can call the log function. These messages can be read by
any user process that opens and reads the /dev/klog device.

2. Most user processes (daemons) call the syslog function to generate log
messages. This causes the message to be sent to the UNIX domain
datagram socket /dev/log.

3. A user process on this host, or on some other host that is connected to
this host by a TCP/IP network, can send log messages to UDP port 514.

written to file or
to logged-in users or
sent to anotheghost

syslogd

uDP

/dev/log port 514 /dev/klog
UNIX domain Internet domain
log

kernel

'

'

'

'

'

'

1+ datagram socket datagram socket
'

'

]

: routines
!

>
L T L I

TCP/IP network

Faculty Signature CCl Signature HOD Signature

