

VTU Question Paper Scheme and Solution

Sub: Application Development using Python Sub Code: 18CS55 Branch: CSE

1

1a List the salient features of the python programming language? 4M

1.Easy to Read and Write: Python's syntax is clear and easy to understand, making it an ideal choice
for beginners. It uses indentation to define code blocks, which enhances code clarity and readability¹.

2.*Extensive Standard Library: Python comes with a vast standard library that includes modules and
packages for various tasks. This extensive library eliminates the need to write code from scratch for
common functionalities like file handling, web development, data manipulation, and more¹.

3.Cross-Platform Compatibility: Python is a cross-platform language, which means you can write code
on one platform (e.g., Windows) and run it on another (e.g., macOS or Linux) with little to no
modification¹.

4.Dynamically Typed: Python programming is a dynamically typed language. It means you don’t need
to declare variable types explicitly. The interpreter determines the data type during runtime¹.

5. Object-Oriented Language: Python supports object-oriented language and concepts of classes,
object encapsulation, etc².

6. GUI Programming Support: Graphical User interfaces can be made using a module such as PyQt5,
PyQt4, wxPython, or Tk in Python².

7. **High-Level Language**: When we write programs in Python, we do not need to remember the
system architecture, nor do we need to manage the memory².

8. Easy to Debug: Excellent information for mistake tracing. You will be able to quickly identify and
correct the majority of your program’s issues once you understand how to interpret Python’s error
traces².

1b Explain the math operators in python from highest to lowest precedence
with an example for each. Show steps to evaluate (5-1)*(7+1)(3-1) in python
 8M

In Python, mathematical operators have the following precedence from highest (executed
first) to lowest (executed last):

1. Parentheses (): They have the highest precedence and can be used to force an
expression to evaluate in the order you want.

o Example: (2 + 3) * 4 evaluates to 20.

2. Exponentiation **: This operator raises the number to its left to the power of the
number to its right.

o Example: 2 ** 3 evaluates to 8.

3. Multiplication *, Division /, Floor Division //, and Modulus %: These operators all have
the same precedence. If they appear together, they are evaluated from left to right.

o Example: 2 * 3 / 2 evaluates to 3.0.

4. Addition + and Subtraction -: These also have the same precedence, which is lower
than multiplication, division, etc. If they appear together, they are evaluated from left to
right.

o Example: 2 + 3 - 1 evaluates to 4.

Now let’s evaluate (5-1)*(7+1)(3-1):

This expression is not valid in Python because it’s missing an operator between (7+1) and

(3-1). If you meant for these to be multiplied together, you should write it as (5-
1)*(7+1)*(3-1). Let’s evaluate this corrected expression:

result = (5-1)*(7+1)*(3-1)
print(result) # Outputs: 64

Here’s how it’s evaluated:

• First, the expressions in parentheses are evaluated: (5-1) becomes 4, (7+1)

becomes 8, and (3-1) becomes 2.

• Then, these results are multiplied together: 4 * 8 * 2 equals 64. So, (5-
1)*(7+1)*(3-1) evaluates to 64.

1c Write a program to find the sum of all and even numbers of n elements.Here skip the
numbers which are divisible by 3 8M

Program:
def calculate_sums(n):
 total_sum = 0
 even_sum = 0

 for i in range(1, n+1):
 if i % 3 == 0: # Skip numbers divisible by 3
 continue
 total_sum += i
 if i % 2 == 0: # Check if the number is even
 even_sum += i

 return total_sum, even_sum

n = int(input("Enter a number: "))
total, even = calculate_sums(n)
print(f"The sum of all numbers from 1 to {n} (excluding multiples of 3) is {total}")
print(f"The sum of all even numbers from 1 to {n} (excluding multiples of 3) is {even}")

2a Give one example for each of the operation below in python language:
 i) string concatenation and replication.
 ii) Read input and display

String Concatenation
str1 = "Hello"
str2 = "World"
concatenated_str = str1 + " " + str2
print(concatenated_str) # Outputs: Hello World

String Replication
replicated_str = str1 * 3
print(replicated_str) # Outputs: HelloHelloHello

Read Input and Display
user_input = input("Please enter something: ")
print("You entered: " + user_input)

2b. Explain:
i) Def statements with parameters

ii) Return values and return statements with an example

i) Def Statements with Parameters:

In Python, def is a keyword used for defining functions. Functions are blocks of reusable
code that perform a specific task. When defining a function, you can specify parameters that
the function takes as input.

Here’s an example:

def greet(name):
 print(f"Hello, {name}!")

In this example, greet is the function name, and name is a parameter. When you call the
function, you provide an argument for this parameter:

ii) Return Values and Return Statements:

A return statement is used to end the execution of the function call and sends the result back
to the caller. The statements after the return statement are not executed.

Here’s an example:

def add_numbers(num1, num2):

 return num1 + num2

In this example, add_numbers is a function that takes two parameters: num1 and num2. The
function adds these numbers together and then uses a return statement to send the result
back:

result = add_numbers(3, 4)
print(result)

 # Outputs: 7

In this case, 7 is the return value of the function. It’s important to note that a function in

Python returns None if it doesn’t have a return statement or if it ends without hitting a return
statement.

Module 2

3a Discuss the different ways of traversing a list .Explain each with an
example 10M

1. Using a for loop:

A for loop is the most common way to traverse a list. It iterates over each element in the list.

fruits = ['apple', 'banana', 'cherry']

for fruit in fruits:

 print(fruit)

2. Using list comprehension:

List comprehension is a concise way to create lists. It can also be used to traverse a list and
perform some operation on each element.

fruits = ['apple', 'banana', 'cherry']

[print(fruit) for fruit in fruits]

3. Using the enumerate() function:

The enumerate() function adds a counter to the list and returns it as an enumerate object.
This can be used to also get the index of each element while traversing.

fruits = ['apple', 'banana', 'cherry']

for i, fruit in enumerate(fruits):

 print(f"Element {i} is {fruit}")

4. Using while loop:

A while loop can also be used to traverse a list by using an index-based approach.

fruits = ['apple', 'banana', 'cherry']

i = 0

while i < len(fruits):

 print(fruits[i])

 i += 1

3b Write a python program that allows a player to guess a secret number within 6
chances. The code that lets the player enter a guess and checks that guess is

right or not by printing the appropriate message. List of numbers are taken as an
input from the user 7M

import random

def guess_the_number():

 numbers = input("Enter numbers separated by space: ")

 numbers = list(map(int, numbers.split()))

 secret_number = random.choice(numbers)

 chances = 6

 while chances > 0:

 guess = int(input("Enter your guess: "))

 if guess == secret_number:

 print("Congratulations! You've guessed the number correctly.")

 return

 else:

 print("Sorry, that's not correct.")

 chances -= 1

 print(f"You've run out of chances. The secret number was {secret_number}.")

guess_the_number()

3c Write a program to demonstrate the use of pretty function 3M

The pprint function in the pprint module provides a capability to print Python data
structures in a format that can be used as input to the interpreter. If you have nested

structures, pprint can print them in a more readable way.

from pprint import pprint

data = {

 "name": "John Doe",

 "age": 30,

 "cities_visited": ["Paris", "Berlin", "London"],

 "bio": {

 "dob": "1990-01-01",

 "hobbies": ["Reading", "Traveling", "Swimming"]

 }

}

pprint(data)

 it will print the data dictionary in a pretty and more readable way. The pprint function is
especially useful when dealing with complex data structures.

4a Compare List and Dictionary data structures with respect to python
language 4M

List:

• Lists are ordered collections of items. The order in which you insert elements into a list
is the order in which they are stored.

• Lists are mutable, meaning you can change their content without changing their
identity. You can modify a list by adding, removing, or changing elements.

• Elements in a list are accessed by their index, which is an integer value that represents
the position of an element in the list.

• Lists are great to use when you want to work with many related values. They enable
you to keep data together that belongs together, condense your code, and perform the
same methods and operations on multiple values at once.

Example:

fruits = ['apple', 'banana', 'cherry']
print(fruits[0]) # Outputs: apple

Dictionary:

• Dictionaries are unordered collections of key-value pairs. Unlike lists, which are
indexed by a range of numbers, dictionaries are indexed by keys, which can be any type
(immutable).

• Like lists, dictionaries are mutable. You can add, remove, or modify elements in a
dictionary.

• Dictionaries are known as associative arrays or hash maps in other programming
languages.

• Dictionaries are great to use when you want to associate values with keys, so you can
look them up efficiently (by key) later.

Example:

person = {'name': 'John', 'age': 30}
print(person['name']) # Outputs: John

4b.Write a program in python that counts the number of occurrences of
each letter in a string. Display the results in column fashion 8M

def count_letters(text):

 count_dict = {}

 for letter in text:

 if letter.isalpha(): # Check if character is a letter

 if letter in count_dict:

 count_dict[letter] += 1

 else:

 count_dict[letter] = 1

 # Display the results in column fashion

 print("Letter | Count")

 print("-------|------")

 for letter, count in sorted(count_dict.items()):

 print(f" {letter} | {count}")

Test the function

count_letters("Hello, World!")

In this program, count_letters is a function that takes a string as input. It creates a

dictionary count_dict where each key is a letter and each value is the number of
occurrences of that letter in the string. The function then prints the contents of this dictionary

in column fashion. The sorted function is used to sort the dictionary items by key (i.e.,

alphabetically by letter) before printing. The isalpha method is used to check if a character
is a letter.

4 C Write the string method syntax in python to perform below 8M
operations.i)Removing white space characters from beginning,end or both
sides of a stringii) To right-justify,left-justify and center a string

i) Removing white space characters from beginning, end or both sides of a string:

For removing leading spaces

string.lstrip()

For removing trailing spaces

string.rstrip()

For removing spaces from both sides

string.strip()

ii) To right-justify, left-justify and center a string:

To right-justify a string

string.rjust(width)

To left-justify a string

string.ljust(width)

To center a string

string.center(width)

5a List out the different character classes. Give representation,Regular
expression symbols, examples and meanings for each character class
 10M

 some of the different character classes in Regular Expressions:

1. \d: This matches any decimal digit. It’s equivalent to [0-9].
o Example: “\d” would match “2” in “Python 2”.

2. \D: This matches any non-digit character. It’s equivalent to [^0-9].
o Example: “\D” would match “P” in “Python 2”.

3. \s: This matches any whitespace character (like: [\t\n\r\f\v]).
o Example: “\s” would match the space in “Python 2”.

4. \S: This matches any non-whitespace character.
o Example: “\S” would match “P” in “Python 2”.

5. \w: This matches any alphanumeric character (like: [a-zA-Z0-9_]).
o Example: “\w” would match “P” in “Python 2”.

6. \W: This matches any non-alphanumeric character.
o Example: “\W” would match the space in “Python 2”.

7. [abc]: This matches any of the characters a, b, or c.
o Example: “[abc]” would match “a” in “Jack”.

8. [^abc]: This matches any character except a, b, or c.
o Example: “[^abc]” would match “J” in “Jack”.

5b Describe the following with suitable python code snippet

i)Greedy and NonGreedy pattern matching.

ii) Findall() method of Regex object 10M

Sure, here are the explanations and Python code snippets for the topics you mentioned:

i) Greedy and Non-Greedy Pattern Matching: In regular expressions, greedy and non-greedy
matching refer to the quantity of text a special character matches.

• Greedy matching (default behavior) matches as much text as possible.
• Non-greedy matching (also called lazy matching) matches as little text as possible.

Here’s an example with Python’s re module:

import re

text = "<html><head><title>Title</title>"

Greedy pattern

greedy_pattern = re.compile("<.*>")

greedy_match = greedy_pattern.search(text)

print("Greedy match: ", greedy_match.group())

 # Outputs: <html><head><title>Title</title>

Non-greedy pattern

non_greedy_pattern = re.compile("<.*?>")

non_greedy_match = non_greedy_pattern.search(text)

print("Non-greedy match: ", non_greedy_match.group()) # Outputs: <html>

ii) Findall() Method of Regex Object: The findall() method returns all non-overlapping
matches of pattern in string, as a list of strings. If one or more groups are present in the
pattern, return a list of groups.

Here’s an example:

import re

text = "Hello World! Hello Python!"

pattern = re.compile("Hello")

matches = pattern.findall(text)

print(matches) # Outputs: ['Hello', 'Hello']

In this example, findall() finds all occurrences of “Hello” in the text. The result is a list of all
matches.

6a Write a python program to rename the filename contains American style
dates (MM-DD-YYYY) to European style dates (DD-MM-YYYY) in the working
directory

import shutil, os, re

Create a regex that matches files with the American date format.
datePattern = re.compile(r"""^(.*?) # all text before the date

 ((0|1)?\d)- # one or two digits for the month

 ((0|1|2|3)?\d)- # one or two digits for the day

 ((19|20)\d\d) # four digits for the year (must start with 19 or 20)
 (.*?)$ # all text after the date

 """, re.VERBOSE)

Loop over the files in the working directory.
for amerFilename in os.listdir('.'):
 mo = datePattern.search(amerFilename)

 # Skip files without a date.
 if mo == None:
 continue

 # Get the different parts of the filename.
 beforePart = mo.group(1)
 monthPart = mo.group(2)
 dayPart = mo.group(4)
 yearPart = mo.group(6)
 afterPart = mo.group(8)

 # Form the European-style filename.
 euroFilename = beforePart + dayPart + '-' + monthPart + '-' + yearPart +
afterPart

 # Get the full, absolute file paths.
 absWorkingDir = os.path.abspath('.')
 amerFilename = os.path.join(absWorkingDir, amerFilename)

 euroFilename = os.path.join(absWorkingDir, euroFilename)

 # Rename the files.
 print('Renaming "%s" to "%s"...' % (amerFilename, euroFilename))

 #shutil.move(amerFilename, euroFilename) # uncomment after testing

6b What are assertions in python?Explain with an example

Assertions in Python are a debugging tool that lets you test if a condition in your code returns
true, and if not, the program will raise an AssertionError with an optional error message.

Assertions are carried out by the assert statement in Python. The assert statement is

used to continue the execute if the given condition evaluates to True. If the assert condition
evaluates to False, then it raises the AssertionError exception with the specified error
message.

Here’s an example:

def apply_discount(product, discount):
 price = int(product['price'] * (1.0 - discount))
 assert 0 <= price <= product['price'], "The discounted price can't be
negative or more than original price"

 return price

product = {'name': 'iPhone', 'price': 70000}

print(apply_discount(product, 0.25)) # Outputs: 52500

print(apply_discount(product, 1.25)) # Raises AssertionError: The discounted
price can't be negative or more than original price

In this example, the apply_discount function calculates a discount on a product’s price.

The assert statement ensures that the discounted price is never less than zero or more
than the original price. If this assertion fails, it raises an AssertionError with a custom error
message. This helps catch bugs or incorrect values early in development.

6 c Explain the file reading and writing process with suitable python
program 5M

Reading from a file:

You can read from a file using the open() function with mode 'r' (read). Once the file is

opened, you can read its contents with the read() method.

Open the file in read mode ('r')

file = open('example.txt', 'r')

Read the contents of the file

contents = file.read()

Always close the file after you're done

file.close()

Print the contents

print(contents)

Writing to a file:

You can write to a file using the open() function with mode 'w' (write). Once the file is opened,

you can write to it with the write() method.

Open the file in write mode ('w')

file = open('example.txt', 'w')

Write to the file

file.write("Hello, World!")

Always close the file after you're done

file.close()

Please note that opening a file in write mode will erase its existing contents. If you want to

append to the file without erasing its contents, use mode 'a' (append).

Also, it’s a good practice to use with statement when working with files. This ensures that the
file is properly closed after it is no longer needed.

Using 'with' for better practice

with open('example.txt', 'r') as file:

 print(file.read())

In this example, file is automatically closed outside the with block. This is more concise and
avoids leaving the file open by accident

7a How objects are mutable by nature justify with an example? 4M

In Python, mutability is the ability of an object to change its state or contents after it has been
created. Lists, sets, and dictionaries are examples of mutable objects in Python. This means
you can change their content without changing their identity.

Here’s an example with a list:

Create a list

numbers = [1, 2, 3]

print(numbers) # Outputs: [1, 2, 3]

Modify the list

numbers.append(4)

print(numbers) # Outputs: [1, 2, 3, 4]

In this example, we created a list numbers and then added an element to it with append().

The list numbers is still the same object as before (it has the same identity), but its content has

changed. Therefore, we say that the list is mutable.

On the other hand, some objects like integers, floats, strings and tuples are immutable. This
means once an object is created, it cannot be changed. Here’s an example with a string:

Create a string

greeting = "Hello"

Try to change the string

greeting[0] = "J" # Raises TypeError: 'str' object does not support item assignment

In this example, we tried to change the first letter of the string greeting, but Python raised a

TypeError. This is because strings are immutable in Python - once a string is created, it cannot
be changed.

7b Discuss the methods isinstance() and hasattr() with suitable example for
each 6M

isinstance(): This method checks if an object is an instance or subclass of a class. It returns
True if the object is an instance or subclass of a class, False otherwise.

Python

This code is AI-generated. Review and use carefully. Visit our FAQ for more information.

Example for isinstance()

Define a class

class MyClass:

 pass

Create an instance of MyClass

my_instance = MyClass()

Check if my_instance is an instance of MyClass

print(isinstance(my_instance, MyClass)) # Outputs: True

Check if my_instance is an instance of another class (e.g., list)

print(isinstance(my_instance, list)) # Outputs: False

hasattr(): This method checks if an object has a given attribute. It returns True if the object has
the attribute, False otherwise.

Example for hasattr()

Define a class with an attribute

class MyClass:

 my_attribute = "Hello"

Create an instance of MyClass

my_instance = MyClass()

Check if my_instance has the attribute 'my_attribute'

print(hasattr(my_instance, 'my_attribute')) # Outputs: True

Check if my_instance has another attribute (e.g., 'another_attribute')

print(hasattr(my_instance, 'another_attribute')) # Outputs: False

7cWhat is operator overloading? Write program to add two point objects by
overloading + operator. Also,overload -str-() to display point as an ordered
pair

Operator overloading allows you to redefine the meaning of an operator (like +, -, *, etc.) for
custom classes in Python. This is done by defining a special method in the class definition.

Here’s an example of operator overloading with the + operator and the __str__() method for

a Point class:
Python

This code is AI-generated. Review and use carefully. Visit our FAQ for more information.
Copy

class Point:

 def __init__(self, x=0, y=0):

 self.x = x

 self.y = y

 # Overload the + operator

 def __add__(self, other):

 x = self.x + other.x

 y = self.y + other.y

 return Point(x, y)

https://www.bing.com/new#faq

 # Overload the __str__() method to display point as an ordered pair

 def __str__(self):

 return "({0}, {1})".format(self.x, self.y)

p1 = Point(1, 2)

p2 = Point(3, 4)

Use the overloaded + operator

p3 = p1 + p2

Use the overloaded __str__() method

print(p3) # Outputs: (4, 6)

In this example, we’ve defined a Point class that represents a point in 2D space. We’ve

overloaded the + operator with the __add__() method to allow us to add two Point objects

together. We’ve also overloaded the __str__() method to print the Point object as an

ordered pair. This makes it easier to work with and display Point objects in a way that makes
sense in their context.

8a Define inheritance Explain with an example

Inheritance is a fundamental concept in Object-Oriented Programming (OOP) where a class
(child class or subclass) can inherit properties and methods from another class (parent class
or superclass). The main advantage of inheritance is reusability of code.

Parent class

class Animal:

 def __init__(self, name):

 self.name = name

 def speak(self):

 return "I don't know what sound I make!"

Child class

class Dog(Animal):

 def speak(self):

 return "Woof!"

Child class

class Cat(Animal):

 def speak(self):

 return "Meow!"

Create instances

dog = Dog("Rex")

cat = Cat("Whiskers")

print(dog.name) # Outputs: Rex

print(dog.speak()) # Outputs: Woof!

print(cat.name) # Outputs: Whiskers

print(cat.speak()) # Outputs: Meow!

8b Briefly discuss about __init__() and __str__() methods in python

1. __init__(): This is a special method in Python classes, known as a constructor. It’s
automatically called when an object of the class is instantiated. It’s typically used to
initialize the attributes of a class.

class Example:

 def __init__(self, value):

 self.value = value

e = Example(5) # The __init__() method is called here

In this example, __init__() takes two arguments: self (which is a reference to the instance

being created) and value, which is passed in when the Example class is instantiated.

2. __str__(): This is another special method that should return a string. It’s used as a

human-readable representation of the object, and is called by built-in functions like print()

and str().

class Example:

 def __init__(self, value):

 self.value = value

 def __str__(self):

 return "Example object with value " + str(self.value)

e = Example(5)

print(e) # The __str__() method is called here

8c Demonstrate the polymorphism to generate histogram to count the
number of times each letter in word and in sentence

Polymorphism in object-oriented programming allows us to use a single interface with different
underlying forms. In Python, polymorphism allows us to define methods in the child class with
the same name as defined in their parent class.

Here’s an example of polymorphism where we create a histogram to count the number of times
each letter appears in a word and a sentence:

Python

This code is AI-generated. Review and use carefully. Visit our FAQ for more information.
Copy

class Text:

 def __init__(self, text):

 self.text = text

 def histogram(self):

 hist = {}

 for char in self.text:

 hist[char] = hist.get(char, 0) + 1

 return hist

class Word(Text):

 def histogram(self):

 hist = super().histogram()

 return {k: v for k, v in sorted(hist.items(), key=lambda item: item[1], reverse=True)}

class Sentence(Text):

 def histogram(self):

 hist = super().histogram()

 return {k: v for k, v in sorted(hist.items(), key=lambda item: item[1], reverse=True) if k != '
'}

Create a Word object

word = Word("hello")

print(word.histogram()) # Outputs: {'l': 2, 'h': 1, 'e': 1, 'o': 1}

Create a Sentence object

sentence = Sentence("hello world")

print(sentence.histogram()) # Outputs: {'l': 3, 'o': 2, 'h': 1, 'e': 1, 'w': 1, 'r': 1, 'd': 1}

In this example, Word and Sentence are subclasses of Text. They both inherit the histogram
method from Text, but override it to provide their own implementation. This is an example of
polymorphism - the same method name (histogram) is used for different types (Word and
Sentence), and the correct method is called based on the type of the object.

https://www.bing.com/new#faq

9a Analyze the steps involved in downloading and saving webpage on to
local system along with program

1. Send a HTTP request to the URL of the webpage you want to access. The server
responds to the request by returning the HTML content of the webpage.

2. Once you have accessed the HTML content, you can save it as a local HTML file on
your system.

import os

import requests

Make a request to the website

response = requests.get("http://www.example.com")

response.raise_for_status() # Raise exception if invalid response

Save the webpage content to a .html file

with open(os.path.join('path_to_directory', 'webpage.html'), 'wb') as file:

 for chunk in response.iter_content(100000):

 file.write(chunk)

In this program, replace 'path_to_directory' with the path where you want to save the HTML file.

Please note that this program only downloads the HTML content of the page, not any other
resources like CSS, images, JavaScript, etc. If you want to download a full website for offline
viewing (including all resources), you might want to look into web scraping tools or website
downloaders that can recursively download all linked resources.

Also, be aware that not all websites allow their content to be downloaded or scraped. Always
check the website’s robots.txt file (e.g., http://www.example.com/robots.txt) and terms of
service to ensure you are allowed to download or scrape their content. Be respectful and avoid
overloading the website with too many requests in a short amount of time.

List any 4 CSS selectors for bs4 module using Beautifulsoup passel,
retrieve all of the paragraph tags in the web page www.amazon.com

1. Element Selector: Selects elements based on the element name. For example,

soup.select('p') selects all <p> elements.
2. ID Selector: Selects elements based on their id. For example,

soup.select('#some_id') selects the element with the id some_id.
3. Class Selector: Selects elements based on their class. For example,

soup.select('.some_class') selects all elements with the class some_class.
4. Attribute Selector: Selects elements based on an attribute and its value. For example,

soup.select('a[href="http://www.example.com"]') selects all <a>

elements with a href attribute of http://www.example.com.

To retrieve all of the paragraph tags in a webpage using BeautifulSoup, you can use the

find_all method with the ‘p’ tag. Here’s an example:

import requests

http://www.amazon.com/

from bs4 import BeautifulSoup

Send a GET request to the webpage

response = requests.get('http://www.amazon.com')

Parse the content with BeautifulSoup

soup = BeautifulSoup(response.content, 'html.parser')

Find all paragraph tags

paragraphs = soup.find_all('p')

Print each paragraph's text

for p in paragraphs:

 print(p.get_text())

10 a How to Zip the files and folders. Demonstrate with one example

import os

import zipfile

def zipdir(path, ziph):

 # Iterate over all the directories and files in the path

 for root, dirs, files in os.walk(path):

 for file in files:

 # Write each file to the zip file

 ziph.write(os.path.join(root, file),

 os.path.relpath(os.path.join(root, file),

 os.path.join(path, '..')))

Create a ZipFile object

zipf = zipfile.ZipFile('example.zip', 'w', zipfile.ZIP_DEFLATED)

Call the function with the path to folder you want to zip and the ZipFile object

zipdir('/path/to/folder', zipf)

Close the ZipFile object

zipf.close()

In this example, zipdir() is a function that takes a path and a ZipFile object. It uses

os.walk() to iterate over all directories and files in the path. For each file, it writes it to the zip

file with its relative path (so that directories are preserved in the zip file). The '..' in

os.path.join(path, '..') is used to get the parent directory of path, so that

os.path.relpath() gives us paths relative to the directory we want to zip.

Please replace ‘/path/to/folder’ with your actual folder path that you want to compress. Also,
make sure that you have read permissions for all files and folders that you’re trying to
compress. If not, this might raise a PermissionError.

10b Write a script that will go through every PDF in a folder and encrypt the
PDFS using a password provided on the command line. Save each
encrypted PDF with an encrypted pdf suffix added to the original filename

import os

import sys

import PyPDF2

The password is provided as a command line argument

password = sys.argv[1]

Go through every file in the current working directory

for filename in os.listdir('.'):

 if filename.endswith('.pdf'):

 pdf_file = open(filename, 'rb')

 pdf_reader = PyPDF2.PdfFileReader(pdf_file)

 # Check if PDF is already encrypted

 if pdf_reader.isEncrypted:

 print(f'{filename} is already encrypted.')

 else:

 # Create a PDF writer object

 pdf_writer = PyPDF2.PdfFileWriter()

 # Copy all pages from the reader to the writer object

 for page_num in range(pdf_reader.numPages):

 page_obj = pdf_reader.getPage(page_num)

 pdf_writer.addPage(page_obj)

 # Encrypt the writer object with the password

 pdf_writer.encrypt(password)

 # Create an encrypted version of the PDF

 result_pdf = open(f'{filename[:-4]}_encrypted.pdf', 'wb')

 pdf_writer.write(result_pdf)

 result_pdf.close()

 pdf_file.close()

This script takes a password as a command line argument, goes through every PDF in the
current working directory, and creates an encrypted copy of each PDF. The encrypted copy has

_encrypted.pdf added to the original filename.

Please note that this script doesn’t delete the original, unencrypted PDFs. If you want to delete

the originals after encryption, you can do so with os.unlink(filename), but be careful with

this as it’s not reversible.

Also, please make sure to install the PyPDF2 library using pip:

pip install PyPDF2

And always remember to respect copyright laws and only encrypt PDFs that you have
permission to modify.

This script should be run from the command line like so:

python encrypt_pdfs.py yourpassword

Replace “yourpassword” with the password you want to use for encryption. Make sure your
command line is in the directory where your PDFs are located.

[7]

CO1

L3

