Semester End Examination — July/August 2022
Scheme and Solution
Faculty-Divya Singh/Aparna N

Sub

Sub: | Computer Organization & Architecture Code: 21CS34 Branch: | ISE
Date: | Duration: | 3hrs | Max Marks: | 100 | Sem/Sec: | ITA,B & C
MARKS
1 Operational Concepts of Computer System
8(3
Instruction consists of two parts 1) Operation code (Opcode) 2) Operands diagram)

instructions is stored in the memory.
executes the specified operations.

e This instruction adds the operand at memory location LOCA, to operand in
register RO & places the sum into register.
e This instruction requires the performance of several steps,
1. First the instruction is fetched from the memory into the processor.
2. The operand at LOCA is fetched and added to the contents of RO
3. Finally the resulting sum is stored in the register RO

are performed by separate instructions for performance reasons.

Load LOCA, R1

Add R1, RO

The following steps are included to perform the above operation-

1. First the instruction is fetched from the memory into the processor.

2. The operand at LOCA is fetched from main memory into the register R1
3. Add the contents of the register RO and R1

3. Finally the resulting sum is stored in the register RO

the memory location to be accessed to the memory unit and issuing the appropriate
control signals. The data are then transferred to or from the memory.

e To perform a given task an appropriate program consisting of a list of]
e Individual instructions are brought from the memory into the processor, which

e Data to be stored are also stored in the memory. Examples: - Add LOCA, R0

The preceding add instruction combines a memory access operation with an
ALU Operations. In some other type of computers, these two types of operations

Transfers between the memory and the processor are started by sending the address of

MEMORY

™,
-

P I I

.’"’;
. /!
MAR MDR
CONTROL

PC RO
R1

o AT

IR

Rn—l
n- GPRs

Fig b : Connections between the processor and the memeory

The above fig. b shows how memory & the processor can be connected. In addition to
the ALU & the control circuitry, the processor contains several registers used for
several different purposes.

The instruction register (IR):-Holds the instructions that is currently being
executed.Its output is available for the control circuits which generates the timing
signals that control the various processing elements in one execution of instruction.

The program counter PC:-This is another specialized register that keeps track of
execution of a program. It contains the memory address of the next instruction to be
fetched and executed.

Besides IR and PC, there are n-general purpose registers RO through Rn-1. The other
two registers which facilitate communication with memory are: -

1. MAR — (Memory Address Register):- It holds the address of the location to be
accessed.

2. MDR - (Memory Data Register):- It contains the data to be written into or read out]
of the address location.

Operating steps are

1.Programs reside in the memory & usually get these through the I/P unit.

2. Execution of the program starts when the PC is set to point at the first instruction of]
the program.

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the
memory.

4. After the time required to access the memory elapses, the address word is read out of
the memory and loaded into the MDR.

5. Now contents of MDR are transferred to the IR & now the instruction is ready to be
decoded and executed.

6. If the instruction involves an operation by the ALU, it is necessary to obtain the
required operands.

7. An operand in the memory is fetched by sending its address to MAR & Initiate a read
cycle.

8. When the operand has been read from the memory to the MDR, it is transferred from
MDR to the ALU.

0. After one or two such repeated cycles, the ALU can perform the desired operation.
10.1If the result of this operation is to be stored in the memory, the result is sent to MDR.
11.Address of location where the result is stored is sent to MAR & a write cycle is
initiated.

12. The contents of PC are incremented so that PC points to the next instruction that is
to be executed.

Ib [Three address, two address, one address 8

S=A*B+C*D

Load A

MULTIPLY B

Store X

Load C

MULTIPLY D

Store Y

Load X

ADD Y

Store S

Basic performance equation 4

e We now focus our attention on the processor time component of the total elapsed
time. Let “T’ be the processor time required to execute a program that has been
prepared in some high-level language. The compiler generates a machine language
object program that corresponds to the source program. Assume that complete]
execution of the program requires the execution of N machine cycle language
instructions. The number N is the actual number of instruction execution and is not
necessarily equal to the number of machine cycle instructions in the object program.
Some instruction may be executed more than once, which in the case for
instructions inside a program loop others may not be executed all, depending on the
input data used. Suppose that the average number of basic steps needed to execute
one machine cycle instruction is S, where each basic step is completed in one clock
cycle. If clock rate
is ‘R’ cycles per second, the program execution time is given by

N xS
T =—-
R

e this is often referred to as the basic performance equation. We must emphasize that
N, S & R are not independent parameters changing one may affect another.
Introducing a new feature in the design of a processor will lead to
improved performance only if the overall result is to reduce the value of T.

2a \Addresssing modes. 10

ool Acmsemabhlesr sy ot Audadressimg Focoectdoces
Tomeredane Fhvialuwe Drperand = wWalhse
Regiates B EA o R
Alhsodote (IDHrect) FACT S TEE B i
Tardinect) (RS Ea — R}

AT B — FEAOT)

- Hancleas LAY EA = [RJ] 4+ N
Base wrish Eocliex DE S] EA = Ra] +— [RFl
Hase whith index MR RSy TEMA — [RJT - [RF1 + M

aryd offseet

| Relative 2P A = [P - X
BT M TN T e R i Fah = [z

Focrermeens BF

PN e T —RE) oot BEs

EA = [Ri}

EA = effective address
Walve = a sgoed ruembeer

2b

Big endian, little endian,

There are two ways in which byte-addresses are arranged (Figure2.3).

1) Big- Endian: Lower byte-addresses are used for the more significant bytes of the word.
2) Little- Endian: Lower byte-addresses are used for the less significant bytes of the word
In both cases, byte-addresses 0,4,8.....are taken as the addresses of successive words in the
memory.

6(3M
each)

2c

Overall Spec Rating

Performance measurement is the measure of how well a processor operates for a given
benchmark.

2 SPEC selects & publishes the standard programs along with their test results for different|
application domains. (SPEC-System Performance Evaluation Corporation).

3 SPEC Rating is given by

SPEC Rating = (Running time of the reference Computer) / (Running time of the Computer
Under test)

_
E

SEFEC rating — (]_:_[= PO,

M8 1]

3a

Explain the following methods of handling interrupt from multiple devices
1) Interrupt nesting. ii) Daisy chain method

Interrupt Nesting

Previously, before the processor started executing the interrupt service routine for a
device, it disabled the interrupts from the device.

In general, same arrangement is used when multiple devices can send interrupt requests
to the processor.

During the execution of an interrupt service routine of device, the processor does not
accept interrupt requests from any other device.

Since the interrupt service routines are usually short, the delay that this causes is
generally acceptable. However, for certain devices this delay may not be acceptable. I/O
devices are organized in a priority structure:

An interrupt request from a high-priority device is accepted while the

processor is executing the interrupt service routine of a low priority device.

A priority level is assigned to a processor that can be

changed under program control.

Priority level of a processor is the priority of the program that is currently

being executed.

'When the processor starts executing the interrupt service routine of a

device, its priority is raised to that of the device.

If the device sending an interrupt request has a higher priority than the

rocessor, the processor accepts the interrupt request.

105 M
each)

-—J | I—l NTR1 INTR p
| Device 1 | | Device 2 | .. | Device p |

INTAT l INTA o

Processor

Priority arbitration

*Each device has a separate interrupt-request and interrupt-acknowledge line.

*Each interrupt-request line is assigned a different priority level.

*Interrupt requests received over these lines are sent to a priority arbitration circuit
in the processor.

=If the interrupt request has a higher priority level than the priority of the processor,
then the request is accepted.

ii)
Daisy chain scheme:

Processaor

= Device 1 wl Device 2 wns —ml Device i

INTA

*Devices are connected to form a daisy chain.

*Devices share the interrupt-request line, and interrupt-acknowledge line is connecte
to form a daisy chain.

*When devices raise an interrupt request, the interrupt-request line is activated.

* The processor in response activates interrupt-acknowledge.

*Received by device 1, if device T does not need service, it passes the signal to devic

*Device that is electrically closest to the processor has the highest priority.

3b

'What is Bus arbitration? Explain centralized & distributed bus arbitration with neat
diagram.

Processor and DMA controllers both need to initiate data

transfers on the bus and access main memory.

The device that is allowed to initiate transfers on the bus

at any given time is called the bus master.

'When the current bus master relinquishes its status as the

bus master, another device can acquire this status.

The process by which the next device to become the bus master is selected
and bus mastership is transferred to it is called bus arbitration.

2 Approaches of Bus arbitration

Centralized arbitration:

A single bus arbiter performs the arbitration.

Distributed arbitration:

All devices participate in the selection of the next bus master.
§ESY

- g

Processor

y

DMA DMA
controller controller
BG1 1 BG2 2

Bus arbiter may be the processor or a separate unit
connected to the bus.

Normally, the processor is the bus master, unless it
grants bus membership to one of the DMA controllers.
DMA controller requests the control of the bus by
asserting the Bus Request (BR) line.

In response, the processor activates the Bus-Grant1

(BG1) line, indicating that the controller may use the

10(5 m
each)

bus when it is free.

BG1 signal is connected to all DMA controllers in a
daisy chain fashion.

BBSY signal is 0, it indicates that the bus is busy.

'When BBSY becomes 1, the DMA controller which
asserted BR can acquire control of the bus.

All devices waiting to use the bus share the responsibility
of carrying out the arbitration process.

Arbitration process does not depend on a central arbiter and hence
distributed arbitration has higher reliability.

Each device is assigned a 4-bit ID number.

All the devices are connected using 5 lines, 4 arbitration
lines to transmit the ID, and one line for the Start-
Arbitration signal.

To request the bus a device:

Asserts the Start-Arbitration signal.

Places its 4-bit ID number on the arbitration lines.

The pattern that appears on the arbitration lines is the
logical-OR of all the 4-bit device IDs placed on the
arbitration lines.

ﬁvﬁ% =

ST ATGIrator

o 1 o 1 (=] 1 1 1

INterface circuit
Tor device A,

Arbitration process:

Each device compares the pattern that appears on the

arbitration lines to its own ID, starting with MSB.

If it detects a difference, it transmits Os on the

arbitration lines for that and all lower bit positions.

The pattern that appears on the arbitration lines is the

logical-OR of all the 4-bit device IDs placed on the

arbitration lines.

Device A has the ID 5 and wants to request the bus:

- Transmits the pattern 0101 on the arbitration lines.

Device B has the ID 6 and wants to request the bus:

- Transmits the pattern 0110 on the arbitration lines.

Pattern that appears on the arbitration lines is the logical OR of the patterns:

- Pattern 0111 appears on the arbitration lines.

Arbitration process:

Each device compares the pattern that appears on the arbitration lines to its own
ID, starting with MSB.

If it detects a difference, it transmits Os on the arbitration lines for that and all lower
bit positions.

Device A compares its ID 5 with a pattern 0101 to pattern O111.

It detects a difference at bit position 0, as a result, it transmits a pattern 0100 on the
arbitration lines.

The pattern that appears on the arbitration lines is the logical-OR of 0100 and 0110,
which is 0110.

This pattern is the same as the device ID of B, and hence B has won the arbitration.

4a

Illustrate a program that reads one line from the keyboard, stores it in memory buffer,

and echoes it back to the display

10

Move
TestBit
Branch=0
Move
TestBit
Branch=0
Move
Move
Compare
Branch#0
Move
Call

WAITK

WAITD

devices

#LINE, RO
#0,STATUS
WAITK
DATAIN,R1
#1,STATUS
WAITD
R1,DATAOUT
R1,(RO)+
#$0D,R1

WAITK
#$0A,DATAOUT
PROCESS

The example described above illustrates program controlled I/ O, in which the
processor repeatedly checks a status flag to achieve the required synchronization
between the processor and an input or output device. We say that the processor polls the

Initialize memory pointer

Test SIN

Wait for character to be entered
Read character

Test SOUT

Wait for display to become ready
Send character to display

Store character and advance pointer
Check if Carriage Return

If not, get another character
Otherwise, send Line Feed

Call a subroutine to process the
input line

4b

py DU -1

Discuss with neat diagram ,the general 8-bit parallel interface circuit.

~— PAD

Input
L status

- PEY

DATADUT

————= PBO

SOUT

~

Slave-
Ready

Handsha [=— C°1
Control - CE2

Master
Ready

| K&

) —

A2 —-—

Al

AD

*Combined I/0 interface circuit.
*Address bits AZ through A31, that is
30 bits are used to select the overall
interface.

*Address bits A1 through A0, that is, 2
bits select one of the three registers,
namely, DATAIN, DATAOUT, and

the status register.

*Status register contains the flags SIN anc
SOUT in bits 0 and 1.

*Data lines PAQ through PA7 connect the
input device to the DATAIN register.
*DATAOUT register connects the data
lines on the processor bus to lines PBO
through PB7 which connect to the output
device.

Separate input and output data lines for
connection to an I/0 device.

10(Diagra
m-4)

S5a

Cells

Explain the internal organization of a 16 Megabits DRAM chip configured as 2M X8

8(4-
Diagram)

5b

Explain synchronous DRAM with neat diagram.

8(3-
Diagram)

*Operation is directly synchronized

Refrmy

conarer with processor clock signal.
*The outputs of the sense circuits are
U connected to a latch.
o *During a Read operation, the
idems s [s contents of the cells in a row are
e Ceteme loaded onto the latches.
sddrms *During a refresh operation, the
e .y o e : S co.ntents of thei cells are refreshed
P demmies M b without changing the contents of

the latches.

*Data held in the latches correspond
to the selected columns are transferred
to the output.

*Fora burst mode of operation,
successive columns are selected using
column address counter and clock.
CAS signal need not be generated
externally. A new data is placed during
raising edge of the clock

[
[

m
-
@

iagut Datnsatgut

Phbbd

Eg)
o1 41

5¢ | Explain any 2 types of Read only memory (ROM). 42M
® Read-Only Memory: each)
= Data are written into a ROM when it is manufactured.
® Programmable Read-Only Memory (PROM):
= Allow the data to be loaded by a user.
= Process of inserting the data is irreversible.
= Storing information specific to a user in a ROM is expensive.
= Providing programming capability to a user may be better.
® FErasable Programmable Read-Only Memory (EPROM):
= Stored data to be erased and new data to be loaded.
= Flexibility, useful during the development phase of digital systems.
= FErasable, reprogrammable ROM.
= Erasure requires exposing the ROM to UV light.
6a |Describe the different mapping functions in cache. 12(4 M
® Cache memory is an architectural arrangement which makes the main memory appear each)

faster to the processor than it really is.
®m Cache memory is based on the property of computer programs known as “locality of
reference”.
® Three mapping functions:
= Direct mapping
= Associative mapping
= Set-associative mapping.

* Block j of the main memory maps to j modulo 128 of
the cache. 0 maps to 0, 129 maps to 1.
* More than one memory block is mapped onto the same
position in the cache.
* May lead to contention for cache blocks even if the
cache is not full.
* Resolve the contention by allowing new block to
replace the old block, leading to a trivial replacement
algorithm.

* Memory address is divided into three fields:
- Low order 4 bits determine one of the 16

words in a block.
- When a new block is brought into the cache,

the the next 7 bits determine which cache

block this new block is placed in.
- High order 5 bits determine which of the possible

32 blocks is currently present in the cache. These

are tag bits.

Simple to implement but not very flexible.

et |_Block 0
memory| Block 0

Cache Block 1

J J

Block 0

Block 1

Block 127
Block 128

= Block 129

Tag Word

[12 | 4 |

Block 257

Main memory address

Block 409

*Main memory block can be placed into any cache
position.
*Memory address is divided into two fields:
- Low order 4 bits identify the word within a block.
- High order 12 bits or tag bits identify a memory
block when it is resident in the cache.
*Flexible, and uses cache space efficiently.
*Replacement algorithms can be used to replace an
existing block in the cache when the cache is full.
*Cost is higher than direct-mapped cache because of
the need to search all 128 patterns to determine
whether a given block is in the cache.

L2 N k1 |
s { 2 1 Biek2
!
e B ks

Tag Set

r—
Set 63 ! -
BT mrraree

i Biock 127 |

Word

associative mapping.

3

Blocks of cache are grouped into sets.
Mapping function allows a block of the main
memory to reside in any block of a specific set.
Divide the cache into 64 sets, with two blocks per set.
Memory block o, 64, 128 etc. map to block o, and they
can occupy either of the two positions.
Memory address is divided into three fields:

- 6 bit field determines the set number.

- High order 6 bit fields are compared to the tag

fields of the two blocks in a set.

Set-associative mapping combination of direct and

Man
memory

Block | I

. Block 63
Block 64

Block 68

Block 129

| 6 | 6 | 4| Main memory address

Figure 8.18 Selassocialive-mapped cache with wo blocks per sel

Number of blocks per set is a design parameter.
- One extreme is to have all the blocks in one set,
requiring no set bits (fully associative mapping).

- Other extreme is to have one block per set, is
the same as direct mapping.

6b

Draw for IK x Imemory chip with neat figure.

8Diagram-

4)

5.3 SEMICONDUCTOR RAM MEMORIES

5-bit row
address W,
W,
32x32
5-bit .
decoder : memory cell
amay
Wy ;
\Vi Sense /Write
10-bit
address A\
32-e-1 e
output multiplexer — MW
and
input demultiplexer |~ &
5-bit column i
address _ I
Data
input/output

The memory circuit in Figure 5.2 stores 128 bits and requires 14 external connec-
tions for address, data, and control lines. Of course, it also needs two lines for power
supply and ground connections. Consider now a slightly larger memory circuit, one
that has 1K (1024) memory cells. This circuit can be organized as a 128 x § memory,
requiring a total of 19 extemal connections, Alternatively, the same number of cells
can be organized into a 1K x 1 format. In this case, a 10-bit address is needed, but there
i§ only one data line, resulting in 15 external connections. Figure 5.3 shows such an
organization. The required 10-bit address is divided into two groups of 5 bits each to
form the row and column addresses for the cell array. A row address selects a row of 32
cells, all of which are accessed in paralle]. However, according to the column address,
only one of these cells is connected to the extemnal data line by the output multiplexer

and input demultiplexer.

Module 4

Ta

7a).With the help of a diagram explain 4 bit carry look ahead adder and it

operation

10M(4M
Diagram)

The diagram of a carry look ahead adder is as shown above,
I aipple addews, mfnda)\w- g
’ ““‘"‘a f el
N m.ill uv\A“‘\\v *\Adﬂ . Hest oHasy asi Howuh ¢ nra.t.n.kw
Lee vl biphi cabion and division. ane "Wko’ wivy demerad
$

add [subkad Feps, Twws , tuapvoving R bpred JL adds Hgm il
all ot anflmtic ©pusttig -

'|M1/'wv(£
» ~Leokahead adder e ves e L(\] seduci
P calladobs Hio casnss A’m.i

oy _
S '
!Wgéum‘?: ',m pd 6 juald lu,)-q;-,ldai?m‘{q\a,-
e o do Afpple Wrewgh e oddtus
[SIS @a.’@ <y
Core=— P *xicer 4 3.%.'

Ciar = ApYp Geetyrd ¢

\ CW\':’*S&J-:
e O . g

el
- %ML?-MLBM

AT
3 2 i papefumchion

LR xl’

B

1"
rac
-3

_

Comalds Hua o‘u.‘zu afb Y-bil adder .
(R i S § A9/
&> st f G, 10 e
= o * A Gy 1 1 A AR AR

G ™ 0"5 *?5(‘,\1_—1 V'sf_(nl*‘-f’:{ﬂ_ P,(;,c*’f’g?-, i’,&(_‘,

(sof

Sach LQA»E A‘Mﬂ‘ » MFADAQA a 4 drdd Sum a{‘. fmn{ud’
)oCo ashhas Yham LPAM) bfju

7b

Ilustrate the hardware arrangement of sequential Multiplication

Multiplication is performed as a series of (n) conditional addition and shift operation
such that if the given bit of the multiplier is O then only a shift operation is performed,
while if the given bit of the multiplier is 1 then addition of the partial products and a|
shift operation are performed.

The combinational array multiplier uses a large number of logic gates for multiplying
numbers. Multiplication of two n-bit numbers can also be performed in a sequential
circuit that uses a single n bit adder.

The block diagram in Figure shows the hardware arrangement for sequential
multiplication. This circuit performs multiplication by using single n-bit adder n times
to implement the spatial addition performed by the n rows of ripple-carry adders in
Figure. Registers A and Q are shift registers, concatenated as shown. Together, they
hold partial product PPi while multiplier bit qi generates the signal Add/Noadd. This
signal causes the multiplexer MUX to select O when qi = 0, or to select the multiplicand
M when qi = 1, to be added to PPi to generate PP(i + 1). The product is computed in n|
cycles. The partial product

grows in length by one bit per cycle from the initial vector, PPO, of n Os in register A.
The carryout from the adder is stored in flipflop C, shown at the left end of the register
C.
Algorithm:

(1) The multiplier and multiplicand are loaded into two registers Q and M. Third

10
M(Diagra
m-5M)

register A and C are cleared to 0.

(2) In each cycle it performs 2 steps: (a) If LSB of the multiplier qi =1, control
sequencer generates Add signal which adds the multiplicand M with the register A and
the result is stored in A.

(b) If gi =0, it generates Noadd signal to restore the previous value in register A.

(3) Right shift the registers C, A and Q by 1 bit

Register A (imatially 0) M

: 1101 |
Shaft right Initial configuration
' ot] 0 0000 Lo 11
iy }—--I Ha-1 “an LT] I C A Q \
\
Multiplier Q } :: ‘I' : *; crl [(I] tl Il ;?':1‘"!' p ity
Add/Noadd 3 \ /
control
| 0011 (I Add 1
1} 1001 111 U_\‘ - J} Second eyl
1] 1001 1110 Noadd |
: T'hird cycle
0 0100 11 11 shig [Thindeye
1 [N 111 |_:.¢|.i 1 -
0 1000 1111 s | p Poumhoyoe
v
Multiplicand M Product
(&) Register configuration (b} Multiplication example

8a

Draw the single bus architecture and explain the control sequence for execution of the
instruction ADD (R3), R1.

1. Rlout, Yin

2. R2out, SelectY, Add, Zin
3 Zout, R3in
Step 1: Output of the register R1 and input of the register Y are enabled, causing the contents of
R1 to be transferred to Y.
Step 2: The multiplexer’s select signal is set to select Y causing the multiplexer to gate the
contents of register Y to input A of the ALU.
Step 3: The contents of Z are transferred to the destination register R3.

10(Diagra
m-4)

8b

'With a neat block diagram, explain hardwired control unit.

10(Diagra
m-4)

Explanation

Module 5

9a

With a suitable example .Explain the concept of pipeline processing

Performance of a computer can be increased by increasing the performance of the CPU.
This can be done by executing more than one task at a time. This procedure is referred
to as pipelining. The concept of pipelining is to allow the processing of a new task even
though the processing of previous task has not ended.

Pipelining is a technique of decomposing a sequential process into suboperations, with
each subprocess being executed in a special dedicated segment that operates
concurrently with all other segments. A pipeline can be visualized as a collection of]
processing segments through which binary information flows. Each segment performs
partial processing dictated by the way the task is partitioned. The result obtained from
the computation in each segment is transferred to the next segment in the pipeline. The
final result is obtained after the data have passed through all segments.

Consider the following operation:

Result=(A+B)*C

First the A and B values are Fetched which is nothing but a “Fetch Operation”.

The result of the Fetch operations is given as input to the Addition operation, which is
an Arithmetic operation.

The result of the Arithmetic operation is again given to the Data operand C which is
fetched from the memory and using another arithmetic operation which is
Multiplication in this scenario is executed. Finally the Result is again stored in the
“Result” variable.

In this process we are using up-to 5 pipelines which are Fetch Operation (A)

Fetch Operation(B)

Addition of (A & B),

Fetch Operation(C)

10((Examp
le-4)

Multiplication of ((A+B), C)

Load ((A+B)*C)
Pipelining
Al Ba
! !
R rR2
v L
Multiplier
L Y
R3 R4

Adder

Now consider the case where a k-segment pipeline with a clock cycle time t, is used to
execute n tasks. The first task T1 requires a time equal to k t, to complete its operation
since there are k segments in the pipe.
The remaining n - 1 tasks emerge from the pipe at the rate of one task per clock cycle
and they will be completed after a time equal to (n - 1)t, . Therefore, to complete n tasks
using a k-segment pipeline requires k + (n - 1) clock cycles.
For example, the diagram of Fig. shows four segments and six tasks. The time required
to complete all the operations is 4 + (6 - 1) =9 clock cycles, as indicated in the diagram.

TABLE 9-1 Content of Registers in Pipeline Example

9b

are used in order to implement floating-point operations, fixed-point multiplication, and

other similar kinds of calculations that come up in scientific situations.

Let’s look at an example to better understand the ideas of an arithmetic pipeline. We

perform addition and subtraction of floating points on a unit of the pipeline here.

The inputs in the floating-point adder pipeline refer to two different normalized
floating-point binary numbers. These are defined as follows:

A =X *2°=0.9504 * 10°

Clock Segment 1 Segment 2 Segment 3
Pulse
Number R1 R2 R3 R4 RS
1 A, B, — — —
2 Az Bz Al * Bl C| A—
3 A, B, A2*B; C, A*B, + C
4 A4 84 A3 * BJ C3 AZ * BZ T CZ
5 As Bs As* B, C, Asy*B; + G
6 Ae Bo AS‘BS Cs AJ‘BA + C4
7 A, B, Ag¢* Bs Cs As*Bs + Cs
8 — — A,* B, G Ag* Bs + Cs
9 — — p— — A,*B; + (
Draw and Explain the pipeline for floating point addition and subtraction 10(Diagra
m-
Arithmetic Pipelines are commonly used in various high-performance computers. They 3+e)j;nple

B =Y *2' =0.8200 * 10?

'Where x and y refer to the exponents and X and Y refer to two fractions representing

the mantissa.

The floating-point addition and subtraction process is broken into four pieces. The
matching sub-operation to be executed in the specified pipeline is contained in each

segment. The four segments depict the following sub-operations:
1. Comparing the exponents using subtraction

2. Aligning the mantissa

3. Adding or subtracting the mantissa

4. Normalizing the result

Exponents

X y

Compare exponents

Mantissas
X Y

Difference

Segment 1: by subtraction

R
Segment 2: Choose exponent Align mantissas

R
Segment 3: Add or Subtract
mantissas

R R

Segment 4: Adjust exponent Normalize result

1. Comparing Exponents by Subtraction

The difference between the exponents is calculated by subtracting them. The result’s

exponent is chosen to be the larger exponent.

The exponent difference, 3 — 2 = 1, defines the total number of times the mantissa

associated with the lesser exponent should be shifted to the right.

2. Aligning the Mantissa

As per the difference of exponents calculated in segment one, the mantissa

corresponding with the smaller exponent would be moved.
A =0.9504 * 10°

B = 0.08200 * 10°

3. Adding the Mantissa

Both the mantissa would be added in the third segment.
C=A+B=1.0324*10’

4. Normalizing the Result

After the process of normalization, the result would be written as follows:

C =0.1324 * 10*

10a

With the help of a timing diagram explain 4 segment instruction pipeline
Pipeline processing can happen not only in the data stream but also in the instruction
stream. To perform tasks such as fetching, decoding and execution of instructions, most

digital computers with complicated instructions would require an instruction pipeline.

In general, each and every instruction must be processed by the computer in the

following order:

1. Fetching the instruction from memory

2. Decoding the obtained instruction

3. Calculating the effective address

4. Fetching the operands from the given memory
5. Execution of the instruction

6. Storing the result in a proper place

Each step is carried out in its own segment, and various segments may take different

10((Diagra
m-4)

amounts of time to process the incoming data. Furthermore, there are occasions when
multiple segments request memory access at the very same time, requiring one segment

to wait unless and until the memory access of another is completed.

If the instruction cycle is separated into equal-length segments, the organisation of an
instruction pipeline will become much more efficient. A four-segment type of
instruction pipeline refers to one of the most common instances of this style of

organisation.

A four-segment instruction pipeline unifies two or more distinct segments into a single
unit. For example, the decoding of the instruction and the calculation of the effective

address can be merged into a single segment.

2 1 (™
=] Fetch instruction
Segment 1: from memory

o

Decode instruction and
calculate effectice address

Yes

-~ Branch ?

v

Fetch operand
from memory

v

Segment 4: Execute instruction

v

Segment 2:

Segment 3:

Yes

Interrupt 5
handling <+ Interrupt ~
No
- l L |
Update PC

!

Empty Pipe

_

A four-segment instruction pipeline is illustrated in the block diagram given above. The

instructional cycle is divided into four parts:

Segment 1

The implementation of the instruction fetch segment can be done using the FIFO or

first-in, first-out buffer.

Segment 2

In the second segment, the memory instruction is decoded, and the effective address is

then determined in a separate arithmetic circuit.

Segment 3

In the third segment, some operands would be fetched from memory.

Segment 4

The instructions would finally be executed in the very last segment of a pipeline

organisation.
Step: 1 21345 (6|7 B9 J1of[1112]13
Instruction: 1| | F1 | DA | FO | EX
2 F1 | DA | FO | EX
(Branch) 3 FI | DA | FO | EX
4 Fl| - | - | F1 |DA|FO |EX
5 =1=]—|H|DA]FO|EX
6 FI |DA | FO | EX
1 Fl |DA | FO | EX

10b

Explain the organization of SIMD array processor with appropriate diagram?
SIMD (‘Single Instruction and Multiple Data Stream’) processors is a computers with|
several processing units which operate in parallel. These processing units perform the
same operation in synchronizing under the supervision of the common control unit
(CCU). The SIMD processor includes a set of identical PEs (processing elements)
where each PES has a local memory.

r \

Master Control PE1 Ml |—

Unit
PE2 —| M2

Main Memory | PEof—] Mo
\)

This processor includes a master control unit and main memory. The master control unit|
in the processor controls the operation of the processing elements. And also, decodes
the instruction & determines how the instruction is executed. So, if the instruction is

rogram control or scalar then it is executed directly in the master control unit. Main

10(Diagra
m-4)

memory is mainly used to store the program while every processing unit uses operands
that are stored in its local memory.
Advantages

The advantages of an array processor include the following.

e Array processors improve the whole instruction processing speed.

e These processors run asynchronously from the host CPU the overall capacity
of the system is improved.
These processors include their own local memory that provides extra memory
to systems. So this is an important consideration for the systems through a
limited address space or physical memory.

e These processors simply perform computations on a huge array of data.

e These are extremely powerful tools that help in handling troubles with a high
amount of parallelism.

e This processor includes a number of ALUs that permits all the array elements
to be processed simultaneously.

e Generally, the I/O devices of this processor-array system are very efficient in
supplying the required data to the memory directly.

e The main advantage of using this processor with a range of sensors is a
slighter footprint.

