
 
 

 

 

 
 

Semester End Examination – July/August 2022 

Scheme and Solution 

Faculty-Divya Singh/Aparna N 

Sub: Computer Organization & Architecture 
Sub 

Code: 
21CS34 Branch: ISE 

Date:  Duration: 3hrs Max Marks: 100 Sem/Sec: III A, B & C 

 MARKS 

1 Operational Concepts of Computer System 

Instruction consists of two parts 1) Operation code (Opcode) 2) Operands 

 

 To perform a given task an appropriate program consisting of a list of 

instructions is stored in the memory. 

 Individual instructions are brought from the memory into the processor, which 

executes the specified operations. 

 Data to be stored are also stored in the memory. Examples: - Add LOCA, R0 

 This instruction adds the operand at memory location LOCA, to operand in 

register R0 & places the sum into register.  

 This instruction requires the performance of several steps, 

1. First the instruction is fetched from the memory into the processor. 

2. The operand at LOCA is fetched and added to the contents of R0 

3. Finally the resulting sum is stored in the register R0 

The preceding add instruction combines a memory access operation with an 

ALU Operations. In some other type of computers, these two types of operations 

are performed by separate instructions for performance reasons. 

Load LOCA, R1 

Add R1, R0 
The following steps are included to perform the above operation- 

1. First the instruction is fetched from the memory into the processor. 

2. The operand at LOCA is fetched from main memory into the register R1 

3. Add the contents of the register R0 and R1 

3. Finally the resulting sum is stored in the register R0 

 

Transfers between the memory and the processor are started by sending the address of 

the memory location to be accessed to the memory unit and issuing the appropriate 

control signals. The data are then transferred to or from the memory. 

 

8(3 

diagram) 

OPCODE                    

OPERANDS 



 
 

The above fig. b shows how memory & the processor can be connected. In addition to 

the ALU & the control circuitry, the processor contains several registers used for 

several different purposes. 

The instruction register (IR):-Holds the instructions that is currently being 

executed.Its output is available for the control circuits which generates the timing 

signals that control the various processing elements in one execution of instruction. 

The program counter PC:-This is another specialized register that keeps track of 

execution of a program. It contains the memory address of the next instruction to be 

fetched and executed. 

Besides IR and PC, there are n-general purpose registers R0 through Rn-1. The other 

two registers which facilitate communication with memory are: - 

1. MAR – (Memory Address Register):- It holds the address of the location to be 

accessed. 

2. MDR – (Memory Data Register):- It contains the data to be written into or read out 

of the address location. 

Operating steps are 

1.Programs reside in the memory & usually get these through the I/P unit. 

2. Execution of the program starts when the PC is set to point at the first instruction of 

the program. 

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the 

memory. 

4. After the time required to access the memory elapses, the address word is read out of 

the memory and loaded into the MDR. 

5. Now contents of MDR are transferred to the IR & now the instruction is ready to be 

decoded and executed. 

6. If the instruction involves an operation by the ALU, it is necessary to obtain the 

required operands. 

7. An operand in the memory is fetched by sending its address to MAR & Initiate a read 

cycle. 

8. When the operand has been read from the memory to the MDR, it is transferred from 

MDR to the ALU. 



9. After one or two such repeated cycles, the ALU can perform the desired operation. 

10.If the result of this operation is to be stored in the memory, the result is sent to MDR. 

11.Address of location where the result is stored is sent to MAR & a write cycle is 

initiated. 

12. The contents of PC are incremented so that PC points to the next instruction that is 

to be executed. 

 
 

1b Three address, two address, one address 

 

S=A*B+C*D 

Load A 

MULTIPLY B 

Store X 

Load C 

MULTIPLY D 

Store Y 

Load X 

ADD Y 

Store S 

 

8 

 Basic performance equation 

 We now focus our attention on the processor time component of the total elapsed 

time. Let ‘T’ be the processor time required to execute a program that has been 

prepared in some high-level language. The compiler generates a machine language 

object program that corresponds to the source program. Assume that complete 

execution of the program requires the execution of N machine cycle language 

instructions. The number N is the actual number of instruction execution and is not 

necessarily equal to the number of machine cycle instructions in the object program. 

Some instruction may be executed more than once, which in the case for 

instructions inside a program loop others may not be executed all, depending on the 

input data used. Suppose that the average number of basic steps needed to execute 

one machine cycle instruction is S, where each basic step is completed in one clock 

cycle. If clock rate 

is ‘R’ cycles per second, the program execution time is given by 

 

 this is often referred to as the basic performance equation. We must emphasize that 

N, S & R are not independent parameters changing one may affect another. 

Introducing a new feature in the design of a processor will lead to 

improved performance only if the overall result is to reduce the value of T. 

 

4 

2a Addresssing modes. 10 



 
 

2b Big endian, little endian,  
There are two ways in which byte-addresses are arranged (Figure2.3).  

1) Big- Endian: Lower byte-addresses are used for the more significant bytes of the word.  

2) Little- Endian: Lower byte-addresses are used for the less significant bytes of the word  

In both cases, byte-addresses 0,4,8.....are taken as the addresses of successive words in the 

memory. 

6(3 M 

each) 

2c Overall Spec Rating 

Performance measurement is the measure of how well a processor operates for a given 

benchmark.  

2 SPEC selects & publishes the standard programs along with their test results for different 

application domains. (SPEC-System Performance Evaluation Corporation).  

3 SPEC Rating is given by  
SPEC Rating = (Running time of the reference Computer) / (Running time of the Computer 

Under test) 

 

4 

3a Explain the following methods of handling interrupt from multiple devices 

i) Interrupt nesting. ii)  Daisy chain method 

Interrupt Nesting 

Previously, before the processor started executing the interrupt service routine for a 

device, it disabled the interrupts from the device. 

In general, same arrangement is used when multiple devices can send interrupt requests 

to the processor. 

During the execution of an interrupt service routine of device, the processor does not 

accept interrupt requests from any other device. 

Since the interrupt service routines are usually short, the delay that this causes is 

generally acceptable. However, for certain devices this delay may not be acceptable. I/O 

devices are organized in a priority structure: 

An interrupt request from a high-priority device is accepted while the 

processor is executing the interrupt service routine of a low priority device. 

A priority level is assigned to a processor that can be 

changed under program control. 

Priority level of a processor is the priority of the program that is currently 

being executed. 

When the processor starts executing the interrupt service routine of a 

device, its priority is raised to that of the device. 

If the device sending an interrupt request has a higher priority than the 

processor, the processor accepts the interrupt request. 

10(5 M 

each) 



 
ii) 

 
3b What is Bus arbitration? Explain centralized & distributed bus arbitration with neat 

diagram. 

Processor and DMA controllers both need to initiate data 

transfers on the bus and access main memory. 

The device that is allowed to initiate transfers on the bus 

at any given time is called the bus master. 

When the current bus master relinquishes its status as the 

bus master, another device can acquire this status. 

The process by which the next device to become the bus master is selected 

and bus mastership is transferred to it is called bus arbitration. 

2 Approaches of Bus arbitration 

Centralized arbitration: 

A single bus arbiter performs the arbitration. 

Distributed arbitration: 

All devices participate in the selection of the next bus master. 

 
Bus arbiter may be the processor or a separate unit 

connected to the bus. 

Normally, the processor is the bus master, unless it 

grants bus membership to one of the DMA controllers. 

DMA controller requests the control of the bus by 

asserting the Bus Request (BR) line. 

In response, the processor activates the Bus-Grant1 

(BG1) line, indicating that the controller may use the 

 

10(5 m 

each) 



bus when it is free. 

BG1 signal is connected to all DMA controllers in a 

daisy chain fashion. 

BBSY signal is 0, it indicates that the bus is busy. 

When BBSY becomes 1, the DMA controller which 

asserted BR can acquire control of the bus. 

All devices waiting to use the bus share the responsibility 

of carrying out the arbitration process. 

Arbitration process does not depend on a central arbiter and hence 

distributed arbitration has higher reliability. 

Each device is assigned a 4-bit ID number. 

All the devices are connected using 5 lines, 4 arbitration 

lines to transmit the ID, and one line for the Start- 

Arbitration signal. 

To request the bus a device: 

Asserts the Start-Arbitration signal. 

Places its 4-bit ID number on the arbitration lines. 

The pattern that appears on the arbitration lines is the 

logical-OR of all the 4-bit device IDs placed on the 

arbitration lines. 

 
Arbitration process: 

Each device compares the pattern that appears on the 

arbitration lines to its own ID, starting with MSB. 

If it detects a difference, it transmits 0s on the 

arbitration lines for that and all lower bit positions. 

The pattern that appears on the arbitration lines is the 

logical-OR of all the 4-bit device IDs placed on the 

arbitration lines. 

Device A has the ID 5 and wants to request the bus: 

- Transmits the pattern 0101 on the arbitration lines. 

Device B has the ID 6 and wants to request the bus: 

- Transmits the pattern 0110 on the arbitration lines. 

Pattern that appears on the arbitration lines is the logical OR of the patterns: 

- Pattern 0111 appears on the arbitration lines. 

Arbitration process: 

Each device compares the pattern that appears on the arbitration lines to its own 

ID, starting with MSB. 

If it detects a difference, it transmits 0s on the arbitration lines for that and all lower 

bit positions. 

Device A compares its ID 5 with a pattern 0101 to pattern 0111. 

It detects a difference at bit position 0, as a result, it transmits a pattern 0100 on the 

arbitration lines. 

The pattern that appears on the arbitration lines is the logical-OR of 0100 and 0110, 

which is 0110. 

This pattern is the same as the device ID of B, and hence B has won the arbitration. 
    

4a Illustrate a program that reads one line from the keyboard, stores it in memory buffer, 

and echoes it back to the display 

10 



 

 
The example described above illustrates program controlled I / O, in which the 

processor repeatedly checks a status flag to achieve the required synchronization 

between the processor and an input or output device. We say that the processor polls the 

devices 

4b Discuss with neat diagram ,the general 8-bit parallel interface circuit. 

 
 

10(Diagra

m-4) 

   

5a Explain the internal organization of a 16 Megabits DRAM chip configured as 2MX8 

    Cells 

 
 

8(4-

Diagram) 

5b Explain synchronous DRAM with neat diagram. 8(3-

Diagram) 



 
5c  Explain any 2 types of Read only memory (ROM). 

 Read-Only Memory: 

 Data are written into a ROM when it is manufactured.  

 Programmable Read-Only Memory (PROM): 

 Allow the data to be loaded by a user. 

 Process of inserting the data is irreversible. 

 Storing information specific to a user in a ROM is expensive.  

 Providing programming capability to a user may be better.   

 Erasable Programmable Read-Only Memory (EPROM):  

 Stored data to be erased and new data to be loaded. 

 Flexibility, useful during the development phase of digital systems. 

 Erasable, reprogrammable ROM. 

 Erasure requires exposing the ROM to UV light. 

4(2 M 

each) 

   

6a Describe the different mapping functions in cache. 
 Cache memory is an architectural arrangement which makes the main memory appear 

faster to the processor than it really is.  

 Cache memory is based on the property of computer programs known as “locality of 

reference”.  
 Three mapping functions: 

 Direct mapping 

 Associative mapping 

 Set-associative mapping.  

 

•  Block j of the main memory maps to j modulo 128 of  
the cache. 0 maps to 0, 129 maps to 1. 

• More than one memory block is mapped onto  the same  

position in the cache. 

• May lead to contention for cache blocks even if the  

cache is not full.  

• Resolve the contention by allowing new block to  

replace the old block, leading to a trivial replacement  

algorithm.  

• Memory address is divided into three fields: 

    - Low order 4 bits determine one of the 16 

      words in a block.  

    - When a new block is brought into the cache, 

       the the next 7 bits determine which cache  

      block this new block is placed in. 

    - High order 5 bits determine which of the possible 

      32 blocks is currently present in the cache. These 

      are tag bits. 

12(4 M 

each) 



• Simple to implement but not very flexible. 

 

 



 

 
 

6b Draw for lK x 1memory chip with neat figure. 8Diagram-

4) 



 

 
   

 Module 4  

7a 7a).With the help of a diagram explain 4 bit carry look ahead adder and it 

operation 

10M(4M –
Diagram) 



 



 
7b Illustrate the hardware arrangement of sequential Multiplication 

 

Multiplication is performed as a series of (n) conditional addition and shift operation 

such that if the given bit of the multiplier is 0 then only a shift operation is performed, 

while if the given bit of the multiplier is 1 then addition of the partial products and a 

shift operation are performed. 

The combinational array multiplier uses a large number of logic gates for multiplying 

numbers. Multiplication of two n-bit numbers can also be performed in a sequential 

circuit that uses a single n bit adder. 

The block diagram in Figure shows the hardware arrangement for sequential 

multiplication. This circuit performs multiplication by using single n-bit adder n times 

to implement the spatial addition performed by the n rows of ripple-carry adders in 

Figure. Registers A and Q are shift registers, concatenated as shown. Together, they 

hold partial product PPi while multiplier bit qi generates the signal Add/Noadd. This 

signal causes the multiplexer MUX to select 0 when qi = 0, or to select the multiplicand 

M when qi = 1, to be added to PPi to generate PP(i + 1). The product is computed in n 

cycles. The partial product 

 grows in length by one bit per cycle from the initial vector, PP0, of n 0s in register A. 

The carryout from the adder is stored in flipflop C, shown at the left end of the register 

C. 

Algorithm:  

(1) The multiplier and multiplicand are loaded into two registers Q and M. Third 

10 

M(Diagra

m-5M) 



register A and C are cleared to 0.  

(2) In each cycle it performs 2 steps: (a) If LSB of the multiplier qi =1, control 

sequencer generates Add signal which adds the multiplicand M with the register A and 

the result is stored in A.  

(b) If qi =0, it generates Noadd signal to restore the previous value in register A. 

 (3) Right shift the registers C, A and Q by 1 bit 

 

 
 

8a Draw the single bus architecture and explain the control sequence for execution of the 

instruction ADD (R3), R1.  

 
1. R1out, Yin 

2. R2out, SelectY, Add, Zin  

3 Zout, R3in 

Step 1: Output of the register R1 and input of the register Y are enabled, causing the contents of 

R1 to be transferred to Y. 

Step 2: The multiplexer’s select signal is set to select Y causing the multiplexer to gate the 

contents of register Y to input A of the ALU. 

Step 3: The contents of Z are transferred to the destination register R3. 

10(Diagra

m-4) 

8b With a neat block diagram, explain hardwired control unit. 10(Diagra

m-4) 

 



 
Explanation 

 Module 5  

9a With a suitable example .Explain the concept of pipeline processing 

Performance of a computer can be increased by increasing the performance of the CPU. 

This can be done by executing more than one task at a time. This procedure is referred 

to as pipelining. The concept of pipelining is to allow the processing of a new task even 

though the processing of previous task has not ended. 

Pipelining is a technique of decomposing a sequential process into suboperations, with 

each subprocess being executed in a special dedicated segment that operates 

concurrently with all other segments. A pipeline can be visualized as a collection of 

processing segments through which binary information flows. Each segment performs 

partial processing dictated by the way the task is partitioned. The result obtained from 

the computation in each segment is transferred to the next segment in the pipeline. The 

final result is obtained after the data have passed through all segments. 

Consider the following operation:  

Result=(A+B)*C  

First the A and B values are Fetched which is nothing but a “Fetch Operation”.  
The result of the Fetch operations is given as input to the Addition operation, which is 

an Arithmetic operation.  

The result of the Arithmetic operation is again given to the Data operand C which is 

fetched from the memory and using another arithmetic operation which is 

Multiplication in this scenario is executed. Finally the Result is again stored in the 

“Result” variable. 

In this process we are using up-to 5 pipelines which are Fetch Operation (A) 

Fetch Operation(B) 

 Addition of (A & B), 

 Fetch Operation(C) 

10((Examp

le-4) 



 Multiplication of ((A+B), C) 

 Load ( (A+B)*C) 

 
Now consider the case where a k-segment pipeline with a clock cycle time t, is used to 

execute n tasks. The first task T1 requires a time equal to k t, to complete its operation 

since there are k segments in the pipe.  

The remaining n - 1 tasks emerge from the pipe at the rate of one task per clock cycle 

and they will be completed after a time equal to (n - 1)t, . Therefore, to complete n tasks 

using a k-segment pipeline requires k + (n - 1) clock cycles.  

For example, the diagram of Fig. shows four segments and six tasks. The time required 

to complete all the operations is 4 + (6 - 1) = 9 clock cycles, as indicated in the diagram. 

 
9b Draw and Explain the pipeline for floating point addition and subtraction 

 

Arithmetic Pipelines are commonly used in various high-performance computers. They 

are used in order to implement floating-point operations, fixed-point multiplication, and 

other similar kinds of calculations that come up in scientific situations. 

Let’s look at an example to better understand the ideas of an arithmetic pipeline. We 

perform addition and subtraction of floating points on a unit of the pipeline here. 

The inputs in the floating-point adder pipeline refer to two different normalized 

floating-point binary numbers. These are defined as follows: 

A = X * 2
x
 = 0.9504 * 10

3
 

10(Diagra

m-

3+example

-4) 



B = Y * 2
y
 = 0.8200 * 10

2
 

Where x and y refer to the exponents and X and Y refer to two fractions representing 

the mantissa. 

The floating-point addition and subtraction process is broken into four pieces. The 

matching sub-operation to be executed in the specified pipeline is contained in each 

segment. The four segments depict the following sub-operations: 

1. Comparing the exponents using subtraction 

2. Aligning the mantissa 

3. Adding or subtracting the mantissa 

4. Normalizing the result 

 

 

1. Comparing Exponents by Subtraction 

The difference between the exponents is calculated by subtracting them. The result’s 



exponent is chosen to be the larger exponent. 

The exponent difference, 3 – 2 = 1, defines the total number of times the mantissa 

associated with the lesser exponent should be shifted to the right. 

2. Aligning the Mantissa 

As per the difference of exponents calculated in segment one, the mantissa 

corresponding with the smaller exponent would be moved. 

A = 0.9504 * 10
3
 

B = 0.08200 * 10
3
 

3. Adding the Mantissa 

Both the mantissa would be added in the third segment. 

C = A + B = 1.0324 * 10
3
 

4. Normalizing the Result 

After the process of normalization, the result would be written as follows: 

C = 0.1324 * 10
4
 

 

   

10a With the help of a timing diagram explain 4 segment instruction pipeline 

Pipeline processing can happen not only in the data stream but also in the instruction 

stream. To perform tasks such as fetching, decoding and execution of instructions, most 

digital computers with complicated instructions would require an instruction pipeline. 

In general, each and every instruction must be processed by the computer in the 

following order: 

1. Fetching the instruction from memory 

2. Decoding the obtained instruction 

3. Calculating the effective address 

4. Fetching the operands from the given memory 

5. Execution of the instruction 

6. Storing the result in a proper place 

Each step is carried out in its own segment, and various segments may take different 

10((Diagra

m-4) 



amounts of time to process the incoming data. Furthermore, there are occasions when 

multiple segments request memory access at the very same time, requiring one segment 

to wait unless and until the memory access of another is completed. 

If the instruction cycle is separated into equal-length segments, the organisation of an 

instruction pipeline will become much more efficient. A four-segment type of 

instruction pipeline refers to one of the most common instances of this style of 

organisation. 

A four-segment instruction pipeline unifies two or more distinct segments into a single 

unit. For example, the decoding of the instruction and the calculation of the effective 

address can be merged into a single segment. 

 

A four-segment instruction pipeline is illustrated in the block diagram given above. The 

instructional cycle is divided into four parts: 

Segment 1 

The implementation of the instruction fetch segment can be done using the FIFO or 

first-in, first-out buffer. 

Segment 2 

In the second segment, the memory instruction is decoded, and the effective address is 



then determined in a separate arithmetic circuit. 

Segment 3 

In the third segment, some operands would be fetched from memory. 

Segment 4 

The instructions would finally be executed in the very last segment of a pipeline 

organisation. 

 
 

10b Explain the organization of SIMD array processor with appropriate diagram? 

SIMD (‘Single Instruction and Multiple Data Stream’) processors is a computers with 

several processing units which operate in parallel. These processing units perform the 

same operation in synchronizing under the supervision of the common control unit 

(CCU). The SIMD processor includes a set of identical PEs (processing elements) 

where each PES has a local memory. 

 
This processor includes a master control unit and main memory. The master control unit 

in the processor controls the operation of the processing elements. And also, decodes 

the instruction & determines how the instruction is executed. So, if the instruction is 

program control or scalar then it is executed directly in the master control unit. Main 

10(Diagra

m-4) 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

memory is mainly used to store the program while every processing unit uses operands 

that are stored in its local memory. 

Advantages 

The advantages of an array processor include the following. 

 Array processors improve the whole instruction processing speed. 

 These processors run asynchronously from the host CPU the overall capacity 

of the system is improved. 

These processors include their own local memory that provides extra memory 

to systems. So this is an important consideration for the systems through a 

limited address space or physical memory. 

 These processors simply perform computations on a huge array of data. 

 These are extremely powerful tools that help in handling troubles with a high 

amount of parallelism. 

 This processor includes a number of ALUs that permits all the array elements 

to be processed simultaneously. 

 Generally, the I/O devices of this processor-array system are very efficient in 

supplying the required data to the memory directly. 

 The main advantage of using this processor with a range of sensors is a 

slighter footprint. 


