USN					

Internal Assessment Test II – August 2023

Sub:	Mathe	Mathematics – II for CSE Stream					Sub Code:	BMATS201			
Date:	08/08/2023 Duration: 90 mins Max Marks: 50 Sem / Sec: II / I,J,								L	О	BE
Ans	swer an	y FIVE	questions.	Keep accura	acy up to four o	decin	nal places fo	or all questions.	MARKS	CO	RBT
1.	Using 7	Γaylor's	series metho	od Solve $\frac{dy}{dx}$	$= x^2 - y$, y(0	0)=1	to get y(0.1)) considering up to	[10]	CO5	L3
	fourth o	degree te	rm								
2.	Use Runge-Kutta method to find y(0.2) for $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) =1 taking h=0.2								[10]	CO5	L3
3.	Use Mo	odified E	uler's metho	od to compu	te y(0.1) given $\frac{1}{2}$	$\frac{dy}{dx} =$	$\boldsymbol{x} + \boldsymbol{y}$, y(0)	=1 taking h=0.1	[10]	CO5	L3
		lne's Pre	edictor-corre	ector method	to compute y(1	.4) i	f given $\frac{dy}{dx} =$	$x^2 + \frac{y}{2}$, from the	[10]	CO5	L3
	data										
	X	1	1.1		1.2		1.3				
	у	2	2.2156	5	2.4549	2	.7514				

USN					

Internal Assessment Test II - August 2023

Sub:	Mathe	Mathematics – II for CSE Stream					Sub Code:	BMATS201			
Date:	08/08	08/08/2023 Duration: 90 mins Max Marks: 50 Sem / Sec: II / I, J,							L	О	BE
Ans	Answer any FIVE questions. Keep accuracy up to four decimal places for all questions									CO	RBT
	fourth (degree tei	m.	ил				considering up to	[10]	CO5	L3
2.	Use Runge-Kutta method to find y(0.2) for $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) =1 taking h=0.2								[10]	CO5	L3
3.	Use Mo	odified E	uler's metho	od to compu	te y(0.1) given $\frac{2}{3}$	$\frac{dy}{dx} =$	$\boldsymbol{x} + \boldsymbol{y}$, y(0)	=1 taking h=0.1	[10]	CO5	L3
	Use Milne's Predictor-corrector method to compute y(1.4) if given $\frac{dy}{dx} = x^2 + \frac{y}{2}$, from the data								[10]	CO5	L3
	X	1	1.1		1.2		1.3				
	у	2	2.2156	5	2.4549	2	.7514				

5.	Evaluate I = (1) Simpson's	$= \int_{1}^{4} e^{(\frac{1}{x})} dx,$ (3/8) th rule	taking four (2) Trapezoid		g		[5+5]	CO4	L3
6.	Find an approposition, corr		•		_	ne method of false -2.	[10]	CO4	L3
7.	Use Newton's	divided diffe	rence formula	e to fit the po	olynomial to th	ne data		CO4	L3
	x	4	7	9	12		[10]		
	y=f(x)	-43	83	327	1053				

5.	Evaluate I (1) Simpson'	$= \int_{1}^{4} e^{\left(\frac{1}{x}\right)} dx,$ s(3/8) th rule	taking for (2) Trapez	ur ordinates u oidal rule	sing		[5+5]	CO4	L3
6.						ng the methoden -3 and -2.	[07] l of	CO4	L3
7.	-	s appropriate		-				CO4	L3
	x	20	25	30	35	40	[10]		
	y=f(x)	0.3420	0.4226	0.5000	0.5736	0.6428			

IAT 2 -

	701 X 40
1.	Goven y'= 22-y with 20=0, yo=1
7	$y'=x^2-y$ => $y'(x_0)=0-1=-1$
	$ q''=2x-q' \Rightarrow q''(x_0)=x(0)+1=1$
	$y''' = 2 - y'' \implies y'''(x_0) = 2 - 1 = 1$
	$y''' = 2 - y''$ \Rightarrow $y'''(x_0) = 2 - 1 = 1$ $y'' = - y'''$ \Rightarrow $y''(x_0) = -1$
	Taylor's series expansion is:
	$y(x) = y(x_0) + (x-x_0)y'(x_0) + \frac{(x-x_0)^2}{2!}y''(x_0) + \frac{(x-x_0)^3}{3!}y'''(x_0) +$
	(x-20)4 y(x(0))
	$y(0.1) = 1 + (0.1-0)(-1) + (0.1)^{2} (1) + \frac{(0.1)^{3}}{3!} (1) + \frac{(0.1)^{4}}{4!} (-1)$
	21 31 41
	= 0.9051
2.	By data $f(x,y) = \frac{y-x}{y+x}$, $x_0=0$, $y_0=1$, $h=0.2$
4	$k_1 = hf(x_0, y_0) = 0.2 \left[\frac{1-0}{1+0}\right] = 0.2$
	1 0 (1 h u , k) - [1·1-0·1] 0 144-
	$k_2 = h f(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}) = 0.2 \left[\frac{1.1 - 0.1}{1.1 + 0.1}\right] = 0.1667$
	100-16
	$k_3 = hf(\chi_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}) = 0.1662$
	ky=hf(xo+h, yo+k3)= 0.1414
	$y_1 = y(x_1) = y_0 + \frac{1}{6} \left[k_1 + 2k_2 + 2k_3 + k_4 \right]$
	= 1.1676
3.	$x_0=0, y_0=1, h=0.1$
	$f(x,y) = x+y$; $f(x_0,y_0) = x_0+y_0 = 0+1=1$
	$x_1 = x_0 + h = 0.1$, $y(x_1) = y_1 = ?$

	From Euler's formula,
	$y_1^{(0)} = y_0 + h f(x_0, y_0) = 1 + 0.1(1) = 1.1$
	Modified Euler's formula =>
	$y_i^{(1)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_i^{(0)}) \right]$
	= 1.11
	$y_1^{(2)} = y_0 + h \left[f(x_0, y_0) + f(x_1, y_1^{(1)}) \right]$
	$y_{1}^{(3)} = y_{0} + \frac{h}{2} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(2)}) \right]$
	2
9.3	= 1 + 0.05[1 + 0.1 + 1.1105]
	= 1.1105
	$y_1 = y(0.1) = 1.1105$
4.	$\frac{\chi}{2} \qquad \qquad$
	$x_0 = 1$ $y_0 = 2$ $y_0' = 2$
	$x_1 = 1.1$ $y_1 = 2.2156$ $y_1' = 2.3178$
	$x_2 = 1.2$ $y_2 = 2.4549$ $y_2 = 2.67245$
	23=1.3 y=2.7514 y31=3.0657
	$x_{4} = 1-4$ $y_{4} = ?$
See A	(P)
	$y_{1}^{(P)} = y_{0} + \frac{y_{1}}{3} \left(2y_{1}^{1} - 2y_{2}^{1} + 2y_{3}^{1} \right) = 3.0793$
	$y_{4}^{1} = x_{4}^{2} + y_{4}^{(p)} = 3.49965$
	$y_{4}^{(c)} = y_{2} + \frac{h}{3} \left[y_{2} + 4y_{3}' + y_{4}' \right]$
	= 3.0794
	$y_{4} = 3.4997$
	y ₄ (c) = 3.0794
10	Jy - 3.0/14
	-: 44 = 4 (1.4) = 3.0794

5.
$$n=3$$
. $a=1$. $b=4$. $y=e^{1/2}$. $y=e^{$

2	t	2	3	4
y	2.7183	1-6487	1.3956	1-2840
	90	80010	y ₂	43

Substituting there for (1)

(1) Simpson's 3/8th Rule:

$$I = \frac{3h}{8!} \left[(y_0 + y_3) + 3(y_1 + y_2) \right]$$
= 4.9257

(2) Terapezoidal Rule:

$$I = \frac{h}{2} \left[(y_0 + y_3) + a(y_1 + y_2) \right]$$

- 5.0455

₹6) f(-3) = -14, f(-2) = 2 Root les (n(-2-2, 2, -2-1) and a

P(-2.11) = 1-039.70

I iteration: a = -2.2, b = -2.10, f(a) = -0.048, f(b) = 1.039

8241. G- =d

$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = -2.456$$

I Heration:
$$a = -2.2000$$
, $b = -2.1956$

$$x_2 = \frac{af(b) - bf(a)}{f(b) - f(a)} = -2.1957$$

$$f(-2.1957) = 0.0014$$

$$D = -0.048$$

$$b = -2.1957, f(b) = 0.0014$$

$$x_3 = -2.1958, f(x_3) = 0.0003$$

$$b = -2.1958, f(b) = 0.0003$$

$$b = -2.1958, f(b) = 0.0003$$

$$x_4 = -2.1958, f(b) = 0.0003$$

$$x_4 = -2.1958$$

$$x_4 = -2.1958$$

$$x_4 = -2.1958$$

$$x_4 = -2.1958$$

$$x_4 = -3.1958$$

$$x_5 = -3.1958$$

$$x_$$

Above is the Divided Difference table for the given data.

242

327

1053

12

Newton's Divided Difference Formula is given by y(x) = y(x0) +(x-20) f(x0,x1) + (x-x0)(x-x1) f(x0,x1,x2)+ (x-20)(x-21)(x-22)f(x0,21,22,26)

$$= -43 + (x-4)42 + (x-4)(x-7)16 + (7-4)(x-7)(x-9)1$$

This is the sequined polynomial?

5.0455