CMR											0
INSTITUTE (USN								
TECHNOLOG	θY						1 1			C	MR
	T	<u>lr</u>	nternal As	sessment Tes	t –III				1		
Sub:	Introduction to	Electrical E	Engineerin	ıg	1 1				BESCI	K204B	
Date:	07/09/2023	Duration:	90 mins	Max Marks:	50	Sem :	2nd sem	Branc h:	Chemi	stry cy	cle
		Ansv	ver any F	IVE FULL (Questi	ons					
									Marks	CO	E RB T
transforme PDF Transformers-	4-5.pdf								[5]	CO4	L1
full load. I frequency	No doad 9 at no : No pull - 1 9 at pu No = at sta thury	nchronous s at stand-still 20 f => P speed load = (1-0.03 ll-load (1-0.03 ndstill	peed, ii) N 1. v) Frequence 120 × 5 6 1 N 7 0.01 1000 peed, d = 0 2 × 1000 peed, d = 0 3 × 1000 S=1, = Sf = 0 8 = 0	No load speed tency of rotor $= 100$ $= (1-9)$ No $= 100$ $= (1-9)$ No $= 100$	iii) For curre	ull load	d speed,	iv)	[5]	CO4	L3

2 a) Derive the torque equation for DC motor with suitable notations.			
Torque Equation Voltage egr of de motor V= Eb+IaRa V= Eb+IaRa	[5]	CO3	L2

et 7 be the average electio-magnetic torque developed by armature in Nm (newton metres) Mechanical power developed by armature $P_{m} = \omega \times T \qquad - \Phi$ where $\omega = \frac{2\pi N}{60}$ i.e. $P_{m} = \frac{2\pi N}{60} \times T$	
Using 3 and 4, $EbIa = \omega T$ $T = EbIq$ ω $WKT Eb = P \phi N Z$ $60 A$	

		1	
$WKT = \frac{p \phi N Z}{1 - A}$			
60 A			
Sub Eb in \mathfrak{G} , $T = \frac{p\phi z M}{66 A} \times \frac{Iq}{2\pi M} \times \frac{66}{4}$			
$T = \frac{1}{2\pi} \frac{p\phi z}{A} Ia \qquad 0$ eqn & represents the tanque eqn of de motor considering eqn & p, z and A are constant for given de machine, : $T = K_{\pm}\phi Ia$ where $K_{\pm} = \frac{pz}{2\pi A}$	à		
the longue equi			
egn 6 represent and A are constant for			
Considering egr 6, 7,2			
airen de machine, +			
where $k_{\pm} = \frac{pz}{z}$			
211 A			
2 b) A 6 pole lap connected DC series motor, with 864 conductors, takes a current of 110 A			
at 480 V. The armature resistance and the series field resistance are 0.18 ohm and 0.02 ohm respectively. The flux per pole is 50 mwb. Calculate (i) the speed (ii) the torque			
120 × 50 = 1000 apm.			
i) $Ns = \frac{120J}{P} = \frac{1}{6}$			
ii) No doad speed No			
i) $N_3 = \frac{120 f}{p} \Rightarrow \frac{120 \times 50}{6} = 1000 \text{ fpm}$. ii) N_6 doad speed $N_7 = (1-3) N_8$ g at no load = 0.01 $N_7 = (1-0.01) 1000 \Rightarrow 990 \text{ kpm}$.			
, and	[5]	CO2	1.2
iii) full-load speed, g at full-load = 0.03 (1-0.03) ×1000 -> 970 cpm.	[5]	CO3	L3
g at full- load = 0.00 No = (1-0.03) x1000 => 970 cpm.			
LELI SEL.			
ir) at standstill = sf = f = f = FOHZ.			
at full load, $s = 0.03$			
7 => 1.6HZ.			

	With diagrams explain the concept of rotating magnetic field in an induction motor. Also, prove that the magnitude of resultant flux is a constant three phase induction motor notes (1)-4-7.p	[10]	CO4	L2
4a)	Define "unit" used for consumption of electrical energy and explain the two part tariff			
	with its advantages and disadvantages. the rate atwhich electrical energy is sold to the consumers istermed as 'tariff.' When the rate of electrical energy is charged on the basis ofmaximum demand of the consumer and the units consumed it is called two-parttariff. In this tariff scheme, the total costs charged to the consumers consist of two components: fixed charges and running charges. It can be expressed as: Total Cost = [A (kW) + B (kWh)] Rs. Where, A = charge per kW of max demand (i.e. A is a constant which whenmultiplied with max demand (kW) gives the total fixed costs.) B = charge per kWh of energy consumed (i.e. B is a constant which whenmultiplied with units consumed (kWh), gives total running charges.) * The fixed charges will depend upon maximum demand of the consumer and therunning charge will depend upon the energy (units) consumed. The fixed chargesare due to the interest and depreciation on the capital cost of building andequipment, taxes and a part of operating cost which is independent of energygenerated. On the other hand, the running charges are due to the operating costwhich varies with variation in generated (or supplied) energy. Advantages: It is easily understood by the consumer. It recovers fixed charges which depend upon the maximumdemand of the consumer independent of the units consumed. Disadvantages: Consumer has to pay the fixed charges irrespective of the factwhether he has consumed or not the electrical energy. There is always error in assessing the maximum demand of theconsumer.	[5]	CO5	L2
(4b)	List out the power rating of household appliances including air conditioners, PCs, laptops, printers, etc. Calculate (a) the total power consumed. (b) Monthly Electricity bill	[5]	CO5	L3

House hold appliances Power Consumer for 1 month ?) Afr Conditioner - 1.3 KWD = 1.3 x 20 x 30 (days) = 390 KWh 98) TV - 90W = 0.09 KW = 0.09 ×10 ×30 = 32.4 KWh 988) lesting fan (2) - 80w = 0.08 KW = 0.08 *10 ×30 ×2 48 KWh 9v) Water pump - 1.5hp = 1.5 * 746 * 103 = 1.1 19KW = 1.11 * 1×30 = 33.57KWh V) led lamp (8) - 9W = 0.009 KW = 0.009 x 24x30x8 = 51.84 KWh v?) fron box - 1100W = 1.1KW = 1.1 x 1 x 30. = 33 KWh VFF) printer - 375W = 0.375 KW = 0.375 x 1 x30 VPPP) Refrégerator -380W = 0.38 KW = 0.38 x 24 x 30 = 273.6 KWh Considering thes load conditions. electricity bell is Calculated as follows. Considering lunit = 3rs

Total Kwh = 390 + 32.4+48 + 33.57 +51.84 + 33 +11.25 + 273.6 = 873.66 Kwh so, 873.66 Unifs

So, Total tariff per month = 873.66 * 3 = RSQ 1620.98

5	Δ 250K	VA, 11000/415 V, 50 Hz single phase transformer has 80 turns on the			
	seconda				
	Calcula				
	(i) (ii)	Rated primary and secondary currents Number of primary turns		CO4	
	(iii)	Maximum value of core flux		CO4	
	(iv)	Voltage induced per turn in primary and secondary			
	(v)	Turns Ratio			
		O Ins			
	9 5	$OKUA = U, I, = V_2 I_2$			
		$T_{1} = \frac{250 \times 10^{3}}{11.000} = 22.92A$			
		$I_2 = \frac{250 \times 10^3}{415} = 602404$			
			54.03		
	\overline{i}	C2 = N2 = 80 thangging refurbing	[10]		L3
		$\frac{E_2}{E_1} = \frac{N_2}{N_1}$ $\frac{N_2}{N_2} = 80 finangginar lifetiming the properties of the propert$			
		1000 = / = N, = 10000			
		415 - 80 -> N, = 11000x80			
		$\frac{415}{11000} = \frac{80}{N_1} \rightarrow N_1 = \frac{11000080}{415}$			
		= 2120.5			
		= 2121tnang			
) [= 9 = 4.44 f f m N2			
		415=9.44 x50x dm x80			
		Pm = 415 = 415 = 415 = 3			
		4.44×50×80 17760			
	-	= 0.02336			
		= 23.36mwb			
	_1			I	

A 6-pole generator has 400 armature conductors and has a useful flux per polyometric polyometric polyometric polyometric produce the same emf if wave wound? 11000	Orpm? it is a	
$R = 400$ $\phi/p = 0.06 \omega 6$ lap connected. $g = \frac{P\phi NZ}{60A} = \frac{0.06 \times 8 \times 1000 \times 400}{60 \times 8}$ $= \frac{400 \text{ V}}{600 \text{ V}}$ $= \frac{400 \text{ V}}{600 \times 8}$ $= \frac{600 \text{ V}}{600 \times 8}$	[5]	CO3

6b) Explain the various methods used to control the speed of D.C. shunt motor.

1. Flux Control Method-the **speed of a dc motor** is inversely proportional to the flux per pole. Thus by decreasing the flux, speed can be increased and vice versa.

To control the flux, a rheostat is added in series with the field winding, as shown in the circuit diagram. Adding more resistance in series with the field winding will increase the speed as it decreases the flux. In shunt motors, as field current is relatively very small, I_{sh}^2R loss is small. Therefore, this method is quite efficient. Though speed can be increased above the rated value by reducing flux with this method, it puts a limit to maximum speed as weakening of field flux beyond a limit will adversely affect the commutation.

2. Armature Control Method

CO3

[5]

L2

Speed of a dc motor is directly proportional to the back emf E_b and $E_b = V - I_a R_a$. That means, when supply voltage V and the armature resistance R_a are kept constant, then the speed is directly proportional to armature current I_a . Thus, if we add resistance in series with the armature, I_a decreases and, hence, the speed also decreases. Greater the resistance in series with the armature, greater the decrease in speed.

3. Voltage Control Method

a) Multiple voltage control:

In this method, the shunt field is connected to a fixed exciting voltage and armature is supplied with different voltages. Voltage across armature is changed with the help of suitable switchgear. The speed is approximately proportional to the voltage across the armature.

			1	
7	With a neat diagram explain the Principle of operation and constructional details of a DC generator. Principle of Operation			
	➤ electromagnetic induction			
	➤ a changing magnetic field generates an electromotive force (EMF) in a conductor.			
	 The basic components of a DC generator are a rotating armature, a stationary field magnet, and a commutator. 			
	The magnitude of the output voltage is proportional to the speed of rotation and the strength of the magnetic field.			
	Stator: This is the stationary part of the generator that houses the field magnet. The statorprovides the magnetic field required for the generation of the EMF. Yoke: Supporting frame and path for magnetic flux			
	Poles:			
	Salient poles – pole core – pole shoe – pole carries the field coils Field coils:	[10]	CO3	L2
	Wound on pole shoes –supported by pole cores.			
	All coils are identical and connected in series so that on excitation alternate N and S poles arecreated			
	Pole Field winding Armature Armature Commutator Brushes			