USN					

Internal Assessment Test 3 – Feb 2023

Sub:	Design and Analysis of Algorithms Sub Code: 21CS42 Br	anch: CSE							
Date:	Duration: 90 mins Max Marks: 50 Sem / Sec: IV(A, B & C)								
	Answer any FIVE FULL Questions	MARK S	CO	RB T					
1 (a)									
	following algorithm using analytical framework:		& CO2						
			CO2						
	ALGORITHM <i>MatrixMultiplication</i> ($A[0n - 1, 0n - 1], B[0n - 1, 0n - 1]$)								
	//Multiplies two square matrices of order n by the definition-based algorithm								
	//Input: Two $n \times n$ matrices A and B								
	//Output: Matrix $C = AB$ for $i \leftarrow 0$ to $n - 1$ do								
	for $j \leftarrow 0$ to $n-1$ do								
	$C[i, j] \leftarrow 0.0$								
	for $k \leftarrow 0$ to $n-1$ do								
	$C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]$								
	return C								
	SOLUTION:								
	Obviously, there is just one multiplication executed on each repetition of the								
	algorithm's innermost loop, which is governed by the variable k ranging from the lower bound 0 to the upper bound $n-1$. Therefore, the number of multiplications								
	made for every pair of specific values of variables i and j is								
	n-1								
	$\sum 1$,								
	$\overline{k=0}$								
	and the total number of multiplications $M(n)$ is expressed by the following triple sum:								
	n-1 $n-1$ $n-1$								
	$M(n) = \sum \sum \sum 1.$								
	$i=0 \ j=0 \ k=0$								
	Now, we can compute this sum by using formula (S1) and rule (R1) given								
	above. Starting with the innermost sum $\sum_{k=0}^{n-1} 1$, which is equal to n (why?), we get								
	$M(v) = \sum_{n=1}^{n-1} \sum_{n=1}$								
	$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3.$								
1 (b)		4	CO1	L3					
			&						
			CO2						

	ALGORITHM <i>Enigma</i> (A [0 n-1, 0 n-1])			
	for $i \leftarrow 0$ to $n - 2$ do			
	for $j \leftarrow i + 1$ to $n - 1$ do			
	if A $[i, j] \neq$ A $[j, i]$			
	return false			
	end for			
	end for			
	return true			
	i. What does this algorithm compute?			
	ii. Identify the basic operation.			
	iii. Calculate, how many times the basic operation is executed.			
	iv. Derive the efficiency class of this algorithm.			
	SOLUTION			
	i. Algorithm checks whether a given matrix is its transpose or not.			
	ii. The basic operation is the comparison			
	iii. The basic operation is calculated n^* (n-1)/2 times as j starts from $i + 1$.			
	iv. The efficiency class of this algorithm is $O(n^2)$			
2 (a)	The Factorial function n! has a value 1 when $n \le 1$ and a value of $n^*(n-1)$ when $n > 1$.	6	CO3	L2
(**)	For the above description design the following:			
	i. Recursive algorithm (pseudocode) to compute n!			
	ii. Iterative algorithm (pseudocode) to compute n!			
	SOLUTION			
	Recursive Algorithm			
	ALGORITHM $F(n)$			
	//Computes n! recursively			
	//Input: A nonnegative integer n			
	//Output: The value of $n!$ if $n = 0$ return 1			
	else return $F(n-1) * n$			
	Iterative Algorithm			
	INPUT number			
	SET factorial := 1, i := 1			
	WHILE i <= number DO			
	COMPUTE factorial := factorial * i			
	INCREASE i by 1			
	END LOOP		~ -	
2 (b)	Explain Big- O, Big - Ω , Big - Θ notations with examples.	4	CO2	L2
	SOLUTION			
	POPULION			

O-notation

DEFINITION A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \le cg(n)$$
 for all $n \ge n_0$.

$$100n + 5 \le 100n + 5n$$
 (for all $n \ge 1$) = $105n$

Ω -notation

DEFINITION A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \ge cg(n)$$
 for all $n \ge n_0$.

Here is an example of the formal proof that $n^3 \in \Omega(n^2)$:

$$n^3 \ge n^2$$
 for all $n \ge 0$,

⊕-notation

DEFINITION A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$.

The definition is illustrated in Figure 2.3.

For example, let us prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$. First, we prove the right inequality (the upper bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2 \quad \text{for all } n \ge 0.$$

Second, we prove the left inequality (the lower bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n \text{ (for all } n \ge 2) = \frac{1}{4}n^2.$$

Hence, we can select $c_2 = \frac{1}{4}$, $c_1 = \frac{1}{2}$, and $n_0 = 2$.

				, , , , , , , , , , , , , , , , , , ,	
	ALGORITHM $F(n)$				
	//Computes n! recursively				
	//Input: A nonnegative integer n				
	//Output: The value of <i>n</i> !				
	if $n = 0$ return 1				
	else return $F(n-1) * n$				
	M(n) = M(n-1) + 1 to compute $F(n-1)$ to multiply $F(n-1)$ by n	n > 0.			
	M(n) = M(n-1) + 1 substitut	e M(n-1) = M(n-2) + 1			
	= [M(n-2) + 1] + 1 = M(n-2) + 2 substitut	e M(n-2) = M(n-3) + 1			
	= [M(n-3)+1]+2 = M(n-3)+3.				
	$M(n) = M(n-1) + 1 = \cdots = M(n-i) + \cdots$	$i = \cdots = M(n-n) + n = n$.			
4(a)	With the help of an example prove that $t_1(n) \in t_1(n)+t_2(n) \in O(\max\{g_1(n),g_2(n)\})$	$O(g_1(n))$ and $t_2(n) \in O(g_2(n))$ then	2	CO2	L2
	SOLUTION				
	If $f(n)$ is $O(g(n))$, and $d(n)$ is $O(e(n))$ the	nen,			
	$f(n) + e(n)$ is $O(max{g(n), e(n)})$				
		f(n) = n = O(n)			
		$d(n) = n^2 = O(n^2)$			
		$f(n) + d(n) = n + n^2$			
		= O(n²)			
		= e(n)			
		- e(11)			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
4(b)	Design an algorithm to search an element in	an array using sequential search.	4	CO2	L2
` /	Discuss worst case, best case and average case et			&	
	COLUMN			CO3	
	SOLUTION				

```
ALGORITHM SequentialSearch2(A[0..n], K)
                 //Implements sequential search with a search key as a sentinel
                 //Input: An array A of n elements and a search key K
                 //Output: The index of the first element in A[0..n-1] whose value is
                            equal to K or -1 if no such element is found
                 A[n] \leftarrow K
                 i \leftarrow 0
                 while A[i] \neq K do
                           i \leftarrow i + 1
                 if i < n return i
                 else return -1
       Best Case: O(1)
       Average Case : O(n)
       Worst Case : O(n)
4(c)
       Consider the elements of array {E, X, A, M, P, L, E}. Perform bubble sort and
                                                                                                                           4
                                                                                                                                   CO3
                                                                                                                                           L3
       selection sort on these elements and list out the number of comparisons taken for
       each sort. Identify which algorithm performed better.
       SOLUTION
       Bubble Sort:
         E \stackrel{?}{\leftrightarrow} X \stackrel{?}{\leftrightarrow} A
                                 M P L
                 A \qquad X \stackrel{?}{\leftrightarrow} M \qquad P
         \boldsymbol{E}
                                                    L
                                                              \boldsymbol{E}
                        M \qquad X \stackrel{?}{\leftrightarrow} P
         E
                 A
                                                   L
                                                             E
         E
                                           L \qquad X \stackrel{?}{\leftrightarrow} E
         E \stackrel{?}{\leftrightarrow} A
                         M
                                  P
                                           L E
         A \qquad E \stackrel{?}{\leftrightarrow} M \stackrel{?}{\leftrightarrow} P \stackrel{?}{\leftrightarrow} L
                                                   E
               \boldsymbol{A}
         A \stackrel{?}{\leftrightarrow} E \stackrel{?}{\leftrightarrow} M \stackrel{?}{\leftrightarrow} L
         A \stackrel{?}{\leftrightarrow} E \stackrel{?}{\leftrightarrow} L \stackrel{?}{\leftrightarrow} E
              E E |L
         A \quad \stackrel{?}{\leftrightarrow} \quad E \quad \stackrel{?}{\leftrightarrow} \quad E \quad \stackrel{?}{\leftrightarrow} \quad L
       Selection Sort
               \mid E \mid
                        X
                                \mathbf{A} M P
                                                        L
                                                               E
                  A \mid X
                                                P
                                                               E
                                {f E}
                                     M
                                                        L
                 A \cdot E \mid X
                                     M P
                                                       L
                                                               {f E}
                 A \quad E \quad E \mid M \quad P \quad \mathbf{L}
                                                               X
                                     L \mid P
                              \boldsymbol{E}
                  A \quad E
                                                       \mathbf{M} \quad X
                         E
                                               M \mid \mathbf{P}
                                                               X
                  \boldsymbol{A}
                                E
                                        L
                  A
                         E
                                E
                                        L
                                                            \mid X
                                               M
       Number of Comparisons in Bubble sort and Selection sort are: 21
```

5(a) Design an algorithm for checking whether all elements in a given array are distinct.	4	CO2	L2
SOLUTION			
ALGORITHM UniqueElements $(A[0n-1])$ //Determines whether all the elements in a given array are distinct //Input: An array $A[0n-1]$ //Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to $n-2$ do for $j \leftarrow i+1$ to $n-1$ do if $A[i] = A[j]$ return false return true 5 (b) You have a row of binary digits arranged randomly. Arrange them in such an order	6	CO2	L3
that all 0's precede all 1's or vice-versa. The only constraint in arranging them is that you are allowed to interchange the positions of binary digits if they are not similar. Ex: 11010100 \rightarrow 00001111 Design an algorithm for solving this problem SOLUTION Acquaithm Arrange Binary Digits (A (0n-1)) If downanges the given binary digits such that all i's are preceded with all despos If Input: An away of o's and 1's If output: Reawanged away with \$\phi's \text{ Preceded} \text{ by 0's} I = 0 I = 0 I = 0.1 For (i=0, i=n-1; i=0; i++, i) Swap (ACTI, ACJI)		& CO3	
6 (a) Consider the problem of counting, in a given text, the number of substrings that start with A and end with B. (For example, there are four such strings in CABAAXBYA). Design a brute force algorithm for this problem and determine its efficiency class SOLUTION	7	CO2 & CO3	L3

```
Bruteforce Algorithm
        Algorithm CountSubString1(T[0...n-1])
        // Implements a bruteforce algorithm to count substrings starting with 'A' and ending with 'B'
        // Input: String T consisting of n characters
        // Output: Number of substrings in T starting with 'A' and ending with 'B'
        count \leftarrow 0
        for i in 0 to n-2 do
               if T[i] = 'A'
                      for j in i+1 to n-1 do
                            if T[j] = B' count \leftarrow count +1
        return count
          Efficient Algorithm (using extra space)
          Algorithm CountSubString2(T[0...n-1])
          // Linear time algorithm to count substrings starting with 'A' and ending with 'B'
          // Input: String T consisting of n characters
          // Output: Number of substrings in T starting with 'A' and ending with 'B'
          Let C[0...n-1] be a new array of size n
          if T[0] = 'A' \quad C[0] = 1
          else C[0] = 0
          for i in 1 to n-2 do
                  if T[i] = 'A' C[i] \leftarrow C[i-1] + 1 // Number of A's in prefix string T[0...i]
                  else C[i] \leftarrow C[i-1]
          count \leftarrow 0
          for i in 1 to n-1 do
                  if T[i] = 'B' count = count + C[i]
          return count
                                                                                                     3
                                                                                                            CO3 L3
6(b) Give an example of a text of length n and a pattern of length m that constitutes a
     worst-case input for the brute-force string matching algorithm. Exactly how many
     character comparisons will be made for such input?
     SOLUTION
      The text composed of n zeros and the pattern 0 \dots 01 is an example of
      the worst-case input. The algorithm will make m(n-m+1) character
      comparisons on such input.
```

PO Mapping

	CO-PO and CO-PSO Mapping																		
	Course Outcomes	Bloo ms Lev el	Mod ules cove red	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1	P O 1	P O 1 2	P S O 1	P S O 2	P S O 3	P S O 4
CO1	Analyze the performance of the algorithms, state the efficiency using asymptotic notations, and analyze mathematically the complexity of the algorithm.	L2	M1	3	3	2	3	2	-	1	1	,	1		2	1	-	-	-
CO2	Apply divide and conquer approaches and decrease and conquer approaches in solving the problems and analyze the same	L3	M2	3	3	2	3	2	-	-	,	-	-	-	2		-	-	-
CO3	Apply the appropriate algorithmic design technique like the greedy method, transform and conquer approaches and compare the efficiency of algorithms to solve the given problem.	L3	М3	3	3	2	3	2	-	1	1	,	1	-	2		-	-	-
CO4	Apply and analyze dynamic programming approaches to solve some problems, and improve an algorithm's time efficiency by sacrificing space.	L3	M4	3	3	2	3	2	-	1	1	1	1	-	2	1	-	-	-
CO5	Apply and analyze backtracking, branch and bound methods to describe P, NP, and NP-complete problems.	L3	M5	3	2	2	3	2	-	-	-	-	-	-	2		-	-	-

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.

L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PF	PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)								
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation				
PO2	Problem analysis	PO8	Ethics	1	Slight/Low				
PO3	Design/development of solutions	PO9	Individual and team work	2	Moderate/ Medium				
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High				
PO5	Modern tool usage	PO11	Project management and finance						
PO6	The Engineer and society	PO12	Life-long learning						
PSO1	Develop applications using differe	ent stacks	s of web and programming technologic	es					
PSO2	Design and develop secure, parallel, distributed, networked, and digital systems								
PSO3	Apply software engineering method	ods to de	sign, develop, test and manage softwa	re sys	stems.				
PSO4	Develop intelligent applications for business and industry								