S5 N N A

Internal Assessment Test 3 — Feb 2023

2
I e
2

CELEGR,
" C

Sub: Design and Analysis of Algorithms Sub Code: | 21CS42 ‘ Branch: ‘ CSE
Date: | Duration: | 90 mins \ Max Marks: | 50 | Sem/ Sec: IV(A,B& Q) OBE
Answer any FIVE FULL Questions MAéRK co RTB
1(a) | Consider the following algorithm and derive the time complexity of the 6 CO1| L3
following algorithm using analytical framework: &
CO2
ALGORITHM MatrixMultiplication(A[0..n — 1,0..n — 1], B[0..n — 1, 0.n — 1])
//Multiplies two square matrices of order n by the definition-based algorithm
/Mnput: Two n x n matrices A and B
/[Output: Matrix C = AB
fori <~ 0ton—1do
for j < 0ton —1do
Cli, j] < 0.0
fork < 0ton—1do
return C
SOLUTION: ' 3 _) o
Obviously, there is just one multiplication executed on each repetition of the
algorithm’s innermost loop, which is governed by the variable k ranging from the
lower bound 0 to the upper bound n — 1. Therefore, the number of multiplications
made for every pair of specific values of variables i and j is
n—1
>
k=0
and the total number of multiplications M(n) is expressed by the following
triple sum:
n—1n-1n-1
Mm)=Y" Y Y"1
i=0 j=0 k=0
Now, we can compute this sum by using formula (S1) and rule (R1) given
above. Starting with the innermost sum Z}(’;ll] 1, which is equal to n (why?), we get
n—=1n-1n-1 n—1n—1 n—1
M(n):ZZZl:ZZn:Zn2=n3.
i=0 j=0 k=0 i=0 j=0 i=0
1 (b) 4 CO1| L3
&
COo2

ALGORITHM Enigma (4 [0... n-1, 0.... n-1])
fori—Oton-2do
forj «1it+1ton—1do
ifA[i,j]#Al[ji]
return false
end for

end for
return true

i. What does this algorithm compute?

ii. Identify the basic operation.
iii. Calculate, how many times the basic operation is executed.
iv. Derive the efficiency class of this algorithm.

SOLUTION
I. Algorithm checks whether a given matrix is its transpose or not.
ii. The basic operation is the comparison
iili. The basic operation is calculated n* (n-1)/2 times as j starts from i + 1.
iv. The efficiency class of this algorithm is O(n?)

2(a)

For the above description design the following:
i. Recursive algorithm (pseudocode) to compute n!
ii. Iterative algorithm (pseudocode) to compute n!

SOLUTION
Recursive Algorithm

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if » =0 return 1

elsereturn F(n — 1) xn

Iterative Algorithm

INPUT number

SET factorial :=1,i:=1

WHILE i <= number DO
COMPUTE factorial := factorial * i
INCREASE iby 1

END LOOP

The Factorial function n! has a value 1 when n<=1 and a value of n*(n-1) when n>1.

{OX]

L2

2 (b)

Explain Big- O, Big — Q, Big -® notations with examples.

SOLUTION

CO2

L2

O-notation

DEFINITION A function ¢(n) is said to be in O(g(n)), denoted t(n) € O(g(n)),
if #(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if
there exist some positive constant ¢ and some nonnegative integer n such that

t(n) <cg(n) foralln > n.

100n + 5 < 100n + 5n (for all n > 1) = 105n

Q2-notation

DEFINITION A function ¢(n) is said to be in 2(g(n)), denoted t (n) € Q(g(n)), if
t(n) is bounded below by some positive constant multiple of g(n) for all large n,
i.e., if there exist some positive constant ¢ and some nonnegative integer n, such

that

t(n) > cg(n) foralln>n.

Here is an example of the formal proof that n3 € Q(n?):

n>>n? foralln>0,

®-notation

DEFINITION A function 7(n) is said to be in ®(g(n)), denoted 7(n) € O(g(n)),
if #(n) is bounded both above and below by some positive constant multiples of
g(n) for all large n, i.e., if there exist some positive constants ¢; and ¢, and some
nonnegative integer ny, such that

crg(n) <t(n) <cg(n) foralln=>ng.

The definition is illustrated in Figure 2.3.

For example, let us prove that %n(n — 1) € O(n?). First, we prove the right
inequality (the upper bound):

1 1 1 1
zn(n -1 = —n— —n < —n? foralln > 0.

2
Second, we prove the left inequality (the lower bound):
1ne(n -1 = 1n2 - 1rt > 1nz - 1nln (foralln>2)= 1nez.
2 2 2 2 22 4

Hence, we can select ¢; = ;11, 1= % and ny=2.

3(a)

PN =
1/2\-1” 1/2\1 1/2\'\ ‘\.)2\1

The above diagram represents a recursive tree with the recursive calls. From the

diagram, identify the recurrence relations and solve the same using analytical
framework to find the time efficiency.

SOLUTION
The recurrence relations from the above tree are written as follows:

Mn)=Mmn—-1)+4+14+Mn—-1) forn=>1.
Mn)=2Mmn -1 +1 forn=>1,
M) =1

Mn)=2Mmn-1)+1 sub.M(in —1)=2Mn —-2) +1
=22M(n —2) +1]+1=22M(n—2)+2+1 sub.M(n —2)=2M(n —3)+1
=2 2M(n —3) +1]+2+1=Mn -3) +22+2+1.

M) =2'Mn —i)+2" 1 +212 4. 424 1=2Mn —i)+2" — 1.

Mn)=2""Mn—-m-1)+2"1-1
:2”_1M(1) + zn—l — 1= 2!1—1 + 2!1—1 —1=2"_1.

The time efficiency is O (2")

CO1| L3

CO2

3(b) |With the help of a simple example, give the general plan of analyzing a recursive

function using analytical framework.

SOLUTION

General Plan for Analyzing the Time Efficiency of Recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation.

3. Check whether the number of times the basic operation is executed can vary

on different inputs of the same size; if it can, the worst-case, average-case, and
best-case efficiencies must be investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the
number of times the basic operation is executed.

5. Solve the recurrence or, at least, ascertain the order of growth of its solution.

EXAMPLE (Can be any recursive function or algorithm)

CO1

CO2

L3

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if n =0 return 1

elsereturn F(n — 1) xn

Mn)y=Mmn-1) + 1 forn > 0.
to compute to multiply
F(n-1) F(n—1) by n
Mn)=Mn-1+1 substitute M(n — 1) =Mn —2) +1

=[Mn-2)+1]+1=M(n—-2)+2 substitute M(n —2)=M@n —-3)+1
=[Mn-3)+1]+2=Mmn—3)+3.

Mn)y=Mn-1)4+1=---=Mn—-i)+i=--=Mn—-—n)+n=n.
4(a) | With the help of an example prove that ti(n) € O(gi(n)) and t2(n) € O(g2(n)) then CO2| L2
t1(n)+tz(n) €0(max {gi(n),g2(n)})
SOLUTION
If f(n) is O(g(n)), and d(n) is O(e(n)) then,
f(n) + e(n) is O(max{g(n), e(n)})
f(n) =n=0(n)
d(n) =n? =0(n?)
f(n)+d(n) =n+n?
= 0(n?)
= e(n)
4(b) | Design an algorithm to search an element in an array using sequential search. CO2| L2
Discuss worst case, best case and average case efficiency of this algorithm. &
CO3

SOLUTION

ALGORITHM SequentialSearch2(A[0..n], K)

/ITmplements sequential search with a search key as a sentinel
/Mnput: An array A of n elements and a search key K
//Output: The index of the first element in A[0..n — 1] whose value is
/ equal to K or —1 if no such element is found
Aln] <« K
i<0
while A[i] # K do
i<i+1
if i <nreturni
else return —1

Best Case: O(1)
Average Case : O(n)
Worst Case : O(n)

4(c)

Consider the elements of array {E, X, A, M, P, L, E}. Perform bubble sort and
selection sort on these elements and list out the number of comparisons taken for
each sort. Identify which algorithm performed better.

SOLUTION
Bubble Sort:
E S x 4oa M P L E
E A x & M P L E
E A M x &P L E
E A M P X & E
E A M P L x & E
E A M P L E |X
E & o4 M P L E
A JoJ PR VERPLR R E
A E M L P L E
A E M L E |P
A S E 4 mdoo E
A E L M & E
A E L E |M
A L B 4 4 E
A E E L
A 5B S B S L
Selection Sort
|E X A M P L E
A|X E M P L E
A FE | X M P L E
A E E|M P L X
A E FE L | P M X
A E E L M|P X
A F E L M P | X

Number of Comparisons in Bubble sort and Selection sort are: 21

CO3

L3

5(a) |Design an algorithm for checking whether all elements in a given array are distinct. CO2| L2
SOLUTION
ALGORITHM UniqueElements(A[0..n — 1])
//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
I/ and “false” otherwise
fori < Oton—2do
for j < i+1ton—1do
if A[i] = A[/] return false
return true
5 (b)|You have a row of binary digits arranged randomly. Arrange them in such an order CO2| L3
that all 0’s precede all 1’s or vice-versa. The only constraint in arranging them is &
that you are allowed to interchange the positions of binary digits if they are not COo3
similar.
Ex:11010100—-00001111
Design an algorithm for solving this problem
SOLUTION
e Bfnasy Dr: m[A[o----ﬁ"ﬂ
MGORITHM ArTonge Binasyy UG
Il Awsanges the gFven binasy digfts /5“'&‘ L
all 'S ore preceded tith oll dewos
')
I dnput: An away o o onk |
h oukpuk Q_m,wa‘v\%d Qs wi th Q’S Precad ad
by o
4 =0
j: n-1
’Fm(i“'o'j:”'\" T8 P+, 80)
T a(f] ¢ AL
&pa? (.I’\C,Tj) ACS]}
6 (a) |Consider the problem of counting, in a given text, the number of substrings that CO2| L3
start with A and end with B. (For example, there are four such strings in &
CABAAXBYA). CO3

Design a brute force algorithm for this problem and determine its efficiency class

SOLUTION

Bruteforce Algorithm

Algorithm CountSubString 1(T[0...n-1])
// Implements a bruteforce algorithm to count substrings starting with ‘A’ and ending with ‘B’
/' Tnput: String T consisting of n characters
/! Output: Number of substrings in T starting with ‘A’ and ending with ‘B’
count € 0
foriin O ton-2 do
if T[] ="A
for j in i+1 to n-1 do
if T[j] = ‘B’ count € count +1
return count

Efficient Algorithm (using extra space)

Algorithm CountSubString2(T[0...n-1])

/I Linear time algorithm to count substrings starting with ‘A’ and ending with ‘B’
// Input: String T consisting of n characters

/I Output: Number of substrings in T starting with ‘A’ and ending with ‘B’

Let C[0...n-1] be a new array of size n

if T[0]=‘A> C[0]=1

else C[0]=0

foriin 1 ton-2 do
if T[i] = ‘A’ C[i] € C[i-1]+ 1 // Number of A’s in prefix string T[0...i]
else C[i] € C[i-1]

count €

foriin | ton-1 do
if T[i] = ‘B’ count = count + C[i]

return count

6(b)

Give an example of a text of length n and a pattern of length m that constitutes a
worst-case input for the brute-force string matching algorithm. Exactly how many
character comparisons will be made for such input?

SOLUTION

The text composed of n zeros and the pattern 0 ... 01 is an example of
——
m—1
the worst-case input. The algorithm will make m(n —m + 1) character
comparisons on such input.

CO3

L3

Cl

CClI

HOD

PO Mapping

CO-PO and CO-PSO Mapping
Bloo MDdPPPP P PPPPPPPPPPP
Course OQutcomes ms_ ule_s 0|0|]0|0|0|0|0O0|0O|0O 0101018588
Le‘w‘ell34567391110000
el red 0(1]2|1(2]3]4
Analyze the performance of the
algorithms, state the efficiency using
CO1| asymptotic notations, and analyze L2 ML |33 ([23)2|-|-1|-]- -2 -1-1-]-
mathematically the complexity of the
algorithm.
Apply divide and conquer approaches
and decrease and conquer approaches in - .
co2 SDIX'mgtheproblemsgndar?aﬁ}'zethe L3 M3 203 2R
same
Apply the appropriate algorithmic design
technique like the greedy method,
CO3| transform and conquer approaches and L3 M3 (33232 --|-1-|-1-12]-|-1/-]1-
compare the efficiency of algorithms to
solve the given problem.
Apply and analyze dynamic
rogramming approaches to solve some - .
co4 groﬂlems. and ifrlljpro‘:e an algorithm's L3 Ma 3320302 - R
time efficiency by sacrificing space.
Apply and analyze backtracking, brancl
CO3| and bound methods to describe P. NP, L3 MS (322132 |-|-|-1-"]-|-12]-|-1]-1]-
and NP-complete problems.

coCaIVE REVISED BLOOMS TAXONOMY KEYWORDS
L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,
when, where, etc.
L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,
discuss, extend
L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,
infer.
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

L o .
> discriminate, support, conclude, compare, summarize.

CORRELATION

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 | No Correlation
PO2 Problem analysis PO8 | Ethics 1 | Slight/Low
: . . Moderate/

PO3 | Design/development of solutions PO9 Individual and team work 2 Medium
PO4 Conduct investigations of PO10 Communication 3 Sgbstantlall

complex problems High
PO5 Modern tool usage PO11 @ Project management and finance
PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.
PSO4 Develop intelligent applications for business and industry

