

 CMR INSTITUTE OF TECHNOLOGY

 Affiliated to VTU, Approved by AICTE, Accredited by NBA and NAAC with “A++” Grade

 ITPL MAIN ROAD, BROOKFIELD, BENGALURU-560037, KARNATAKA, INDIA

 Department of Computer Science Engineering

Answer Scheme & Model Solution- IAT1

Sub: System Software and Compilers Sub Code: 18CS61 Sem/Branch: VI / CSE Sections: A,B,C

MARKS

CO

RBT

Question 1 i)Explain the various phases of a compiler with a neat diagram.
ii) Show the translations for an assignment statement sum =initial +

value * 10, clearly indicate the output of each phase.

10 CO2 L2

Scheme 5+5

Solution

(i)

Lexical Analyzer: The 1st Phase of a compiler is called lexical

analysis or scanning. The lexical analyzer reads the stream of

characters making up the source program and groups the

characters into meaningful sequences called lexemes.

Syntax Analyzer: The parser uses the 1st components of the

tokens produced by the lexical analyzer to create a tree-like

intermediate representation that depicts the grammatical

structure of the token stream.

Semantic Analyzer: The semantic analyzer uses the syntax tree

and the information in the symbol table to check the source

program for semantic consistency with the language definition.

Intermediate Code generation: We consider an intermediate

form called three-address code, which consists of a sequence

of assembly-like instructions with three operands per

instruction.

Optimizer: The machine-independent code-optimization phase

attempts to improve the intermediate code so that better target

code will result. Usually better means faster, but other

objectives may be desired, such as shorter code, or target code

that consumes less power.

Code Generator: The code generator takes as input an

intermediate representation of the source program and maps it

into the target language. If the target language is machine code,

registers or memory locations are selected for each of the

variables used by the program. Then, the intermediate

instructions are translated into sequences of machine

instructions that perform the same task.

ii)

Question 2 Explain input buffering techniques in lexical analysis and justify

why is it important. Also, explain the use of sentinels in recognizing

the tokens.

10 CO2

L2

Scheme 10

Solution To ensure that a right lexeme is found, often one or more

characters have to be looked up beyond the next lexeme. there

are many situations where we need to look at least one

additional character ahead. For instance, we cannot be sure

we've seen the end of an identifier until we see a character

that is not a letter or digit, and therefore is not part of the

lexeme for id. In C, single-character operators like -, =, or <

could also be the beginning of a two-character operator like -

>, ==, or <=.

• Thus, we shall introduce a two-buffer scheme that

handles large lookaheads safely.

• We then consider an improvement involving sentinels

that saves time checking for the ends of buffers.

Question 3 i) Explain Token, Lexeme and Pattern with an example for each.

ii) Write Lex Program to count words, characters, lines in a given

input file

10 CO3 L2

Scheme 6+4

Solution i) A token is a pair a token name and an optional token value

 ex: keyword, identifier.-if else and num1,num2

A pattern is a description of the form that the lexemes of a

token may take

 Ex: identifier: ([a-z]|[A-Z]) ([a-z]|[A-Z]|[0-9])*

A lexeme is a sequence of characters in the source program

that matches the pattern for a token.

ex: printf(“total = %d\n”, score);

both printf and score are lexemes matching the pattern for

token id, and "Total = %d\n” is a lexeme matching literal.

ii)

Question 4 Construct transition diagram for recognizing relation operators and

also demonstrate the program segment to implement it.
10 CO2 L3

Scheme 5+5

Solution

Question 5 i) Write a lex program to recognize the tokens (keywords {if, then,

else}, number, relop, id) and return the tokens considering attribute

values.

ii) Demonstrate the use of following Meta Characters with suitable
example:

 + , $, ^ , { } , \d

10 CO3 L3

Scheme 5+5

Solution i)

ii)

^ Matches the beginning of input.

$ Matches the end of input.

+ Matches the preceding character one or more times.

For example, zo+ matches zoo but not z.

{n} n is a non-negative integer. Matches exactly n times.

For example, o{2} does not match the o in Bob, but matches

the first two os in foooood.

\d Matches a digit character.

Question 6 i) With an example, demonstrate ambiguous grammar and show
how can it be overcome.

ii) Write a YACC program to check whether the given arithmetic

expression is valid or not

10 CO3 L3

Scheme 5+5

Solution i)

this grammar has a problem: it is extremely ambiguous.

For example, the input 2+3*4 might mean (2+3)*4 or

2+(3*4), and the input 3-4-5-6 might mean 3-(4-(5-6)) or (3-

4)-(5-6) or any of a lot of other possibilities. Following

Figure shows the two possible parses for 2+3’4.

The problem can be solved by specifying precedence and

associativity of the operators.

Explicitly Specifying Precedence and Associativity:

Implicitly Specifying Precedence and Associativity:

ii)

Lex Part

%{

 #include<stdio.h>

#include "y.tab.h"

extern yylval;

%}

%%

[0-9]+ {yylval=atoi(yytext);return num;}

[\+\-*\/] {return yytext[0];}

[)] {return yytext[0];}

[(] {return yytext[0];}

. {;}

\n {return 0;}

%%

Yacc part:

%{

#include<stdio.h>

#include<stdlib.h>

%}

%token num

%left '+' '-'

%left '*' '/'

%%

input:exp {printf("%d\n",$$);exit(0);}

exp: exp'+'exp {$$=$1+$3;}

 |exp'-'exp{$$=$1-$3;}

 |exp'*'exp{$$=$1*$3;}

 |exp'/'exp { if($3==0){printf("Divide by Zero.

Invalid expression.\n");exit(0);}

 else $$=$1/$3;}

 |'('exp')'{$$=$2;}

 |num{$$=$1;};

%%

int yyerror()

{

 printf("Error. Invalid Expression.\n");

 exit(0);

}

int main()

{

 printf("Enter an expression:\n");

 yyparse();

}

