ARS *
30‘& "

(o)

CELEBp
- 4
%

*

x

CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A++ GRADE BY NAAC

CMR INSTITUTE OF TECHNOLOGY

Department of Computer Science Engineering

Answer Scheme & Model Solution- 1AT1

Affiliated to VTU, Approved by AICTE, Accredited by NBA and NAAC with “A++” Grade
ITPL MAIN ROAD, BROOKFIELD, BENGALURU-560037, KARNATAKA, INDIA

| Sub Code: 18CS61 | Sem/Branch: V1/CSE

Sections: A,B,C

(i)

CHArActer stredlrl

Lexical Analyzer

T
LOKeEn stredam

Syntax Analyzer

T
SYNDAX troes

Semantic Analyzer

T
SYNLAX Tree

1

Intermediate Code Generator

Svmbaol Table

T
intermedinte representation
Machine-Independent
Code Optimizer

T
intermediate representation

Code (venerator

T
target-machine code
Machine Dependent

Code Optimizer

T

target-machine code

Figure L.G: Phases of a compiler

Sub: System Software and Compilers
MARKS CcoO RBT
Question i)Explain the various phases of a compiler with a neat diagram. 10 CO2 L2
if) Show the translations for an assignment statement sum =initial +
value * 10, clearly indicate the output of each phase.
Scheme 5+5
Solution

Lexical Analyzer: The 1% Phase of a compiler is called lexical
analysis or scanning. The lexical analyzer reads the stream of
characters making up the source program and groups the
characters into meaningful sequences called lexemes.

Syntax Analyzer: The parser uses the 1st components of the
tokens produced by the lexical analyzer to create a tree-like
intermediate representation that depicts the grammatical
structure of the token stream.

Semantic Analyzer: The semantic analyzer uses the syntax tree
and the information in the symbol table to check the source
program for semantic consistency with the language definition.
Intermediate Code generation: We consider an intermediate
form called three-address code, which consists of a sequence
of assembly-like instructions with three operands per
instruction.

Optimizer: The machine-independent code-optimization phase
attempts to improve the intermediate code so that better target
code will result. Usually better means faster, but other
objectives may be desired, such as shorter code, or target code
that consumes less power.

Code Generator: The code generator takes as input an
intermediate representation of the source program and maps it
into the target language. If the target language is machine code,
registers or memory locations are selected for each of the
variables used by the program. Then, the intermediate
instructions are translated into sequences of machine
instructions that perform the same task.

i)

Sum .,
\‘j{ \\\\,,,e,,’f_ {7On
Exr'c;u mﬂh -
<id o
>)(:><.‘d,.z }{.A(;A) 3548

>4he
(™ gy i
_1:\
<?d,.>/h\1_
4'0),:)-/ o =
B Sy
‘<'d13> ﬁo
v

N

=
e L
Ay *
LI N
4|.d,3> :“T'}"‘f)mxl‘

0

e 4
En*’m(dlhf? Code G;,,,QW)

50 = Iefted 4D

V4 Znpul

+2=1d3 hti tode Generater |
o2 O :
H = t3 Lor €2,1d3

MOLE €2, R2, Fifeo

od 2 e LR ﬂ’; G A
s gy
'{-| ,143“’1040 APDF .21/ £l
] = d 2 1 STE i, R

T
g
-
& _—
= __|

Question Explain input buffering techniques in lexical analysis and justify 10 Cco2
why is it important. Also, explain the use of sentinels in recognizing L2
the tokens.

Scheme 10

Solution To ensure that a right lexeme is found, often one or more

characters have to be looked up beyond the next lexeme. there
are many situations where we need to look at least one
additional character ahead. For instance, we cannot be sure
we've seen the end of an identifier until we see a character
that is not a letter or digit, and therefore is not part of the
lexeme for id. In C, single-character operators like -, =, or <
could also be the beginning of a two-character operator like -
>1 ==, 0or <=,
* Thus, we shall introduce a two-buffer scheme that
handles large lookaheads safely.
* We then consider an improvement involving sentinels
that saves time checking for the ends of buffers.

The lexical analyzer scans the input from left to right one character at a time. It
uses two pointers lexemeBegin pointer (bp) and forward pointer (fp) to keep track
of the pointer of the input scanned. bp

Initial Configuration
Initially both the pointers point to the first character of the input string as shown below

by
bp P

The forward ptr moves ahead to search for end of lexeme. As soon as the blank space
is encountered, it indicates end of lexeme. In above example as soon as ptr (fp)
encounters a blank space the lexeme “int” is identified. The fp will be moved ahead at
white space, when fp encounters white space, it ignore and moves ahead. then both the
begin ptr(bp) and forward ptr(fp) are set at next token.

Token bp

iitlnj.t{ : ',j‘:,i

To identify the boundary of first buffer end of buffer character should be placed at the end first
buffer. Similarly end of second buffer is also recognized by the end of buffer mark present at
the end of second buffer. when fp encounters first eof, then one can recognize end of first
buffer and hence filling up second buffer is started. in the same way when second eof is
obtained then it indicates of second buffer. Alternatively both the buffers can be filled up until
end of the input program and stream of tokens is identified.

This eof character introduced at the end is called Sentinel which is used to identify the
end of buffer.

bp
Buffer 1
ijn|t i=|i +|1
jl=]il+|1 eof
Buffer 2

Two buffer scheme storing
input string

Question

i) Explain Token, Lexeme and Pattern with an example for each.
if) Write Lex Program to count words, characters, lines in a given
input file

10

COos3

L2

Scheme

6+4

Solution

1) A token is a pair a token name and an optional token value

ex: keyword, identifier.-if else and numl,num2
A pattern is a description of the form that the lexemes of a
token may take

Ex: identifier: ([a-Z]|[[A-Z]) ([a-z]|[A-Z]|[0-9])*

A lexeme is a sequence of characters in the source program
that matches the pattern for a token.
ex: printf(“total = %d\n”, score);
both printf and score are lexemes matching the pattern for
token id, and ""Total = %d\n” is a lexeme matching literal.

i)
L1
unsigned charCount = 0, wordCount = 0, lineCount = 0;
%)

word [~ \t\n]+
ecl \n

3
{word} { wordCount++; charCount += yyleng; }
{eol} { charCount++; lineCount++; }

charCount++;

main(arge, argv)
int argc;
char **argv;
{
if large > 1) {
FILE *file;

file = fopen{argv[l], "r");
if (!file) {

fprintf (stderr, "could not open %s\n",argv(l]};
exit (1} ;
1
yyin = file;
yylex();
printf(*%d %d %d\n",charCount, wordCount, lineCount);

return 0;

Question

Construct transition diagram for recognizing relation operators and
also demonstrate the program segment to implement it.

10

Cco2

L3

Scheme

5+5

Solution

‘/()\ ~(1) ‘<<2.)> return(relop, LE)

>

6)) return(relop. NE)

other

-\'
G)j return(relop, LT)

6)) return(relop, EQ)
= 2\
\6)—’@) return(relop, GE)

— *
other @) return(relop, GT)

TOKEN getRelop()

%
TOKEN retToken = new(RELOP);
while(1) { /= repeat character processing until a return
or failure occurs =/
switch(state) {
case 0: ¢ = nextChar();
if (¢ == '<?) state = 1;
else if (¢ == '=’) state = 5;
else if (¢ == ’>’) state = B;
else fail(); /+ lexeme is not a relop =/
break;
case 1
case 8: retract();
retToken.attribute = GT;
return(retToken);
}
}
}

Question i) Write a lex program to recognize the tokens (keywords {if, then, 10 Cos3 L3
else}, number, relop, id) and return the tokens considering attribute
values.
ii) Demonstrate the use of following Meta Characters with suitable
example:
+,%$,~ {}.,ud
Scheme 5+5
Solution i)

%{
/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP %
%}
/* regular definitions */
delim [\tn]

xxxxxxxxx

WS {delim}+
letter [A-Za-z]
digit [0-9]

id Jletter} ({letter}/{digit})*

number {digit}+ (\. {digit}+)? (E [+-]?{digit}+)?
%%

fws} {/ no action and no return */}

if freturnilFy}

then {returm{THEMN);}

else {return{ELSE);}

{id} {yylval =(int) installD(} ; return{lD}:}

"<=" {yylval = LE; return(RELOP);}
e {yylval = EQ; return(RELOP) j}

"<=" {yylval = NE; return(RELOP);}

=" Jyylval = GT; return{RELOP);}
"»=" fyylval = GE; return(RELOP);}
% %

[fauxiliary functions

int installiD() {
/* function to install the lexeme,
whose first character is pointed to by yytext,
a d whose length is vylenag,

into the symbol table and
return a pointer thereto */

}
int installNum() {

/= similar to installlD, but puts numerical
constants into a separate table */

}

main()
{
yylex(),
}

i)

N Matches the beginning of input.

$ Matches the end of input.

+ Matches the preceding character one or more times.
For example, zo+ matches zoo but not z.

{n} nisanon-negative integer. Matches exactly n times.
For example, o{2} does not match the o in Bob, but matches
the first two os in foooood.

\d Matches a digit character.

Question i) With an example, demonstrate ambiguous grammar and show 10 Cos3 L3
how can it be overcome.
if) Write a YACC program to check whether the given arithmetic
expression is valid or not
Scheme 5+5
Solution i)
expression: expression '+ expression { 35 = 51 + 53;)
| expregssicn ‘-' expression { 55 = 51 - §31;)
I expression ‘¥’ expression { 55 = 51 * 53;)

| eypression /¢ expression
{ if{53 = 0}
yyerror (*divide by zero®);

else
55 = 51 / §3;
} .
[‘= expression { 55 =-52;)
l ‘{* expression ') { 55 = 52: 1
| MUMBER, { 5% =511

this grammar has a problem: it is extremely ambiguous.
For example, the input 2+3*4 might mean (2+3)*4 or
2+(3*4), and the input 3-4-5-6 might mean 3-(4-(5-6)) or (3-
4)-(5-6) or any of a lot of other possibilities. Following
Figure shows the two possible parses for 2+3°4.

tatement xtatement

expression * 4 2 + expression

2 +I 3' 3 * 4

The problem can be solved by specifying precedence and
associativity of the operators.
Explicitly Specifying Precedence and Associativity:

$left "4 -4
$lafp ke rje
frnonasacc TMTHIS

Implicitly Specifying Precedence and Associativity:

expression: expression ‘+¢ mulexp
| expression ‘- milexp
I sl exg

malexp: milexp ‘** primary
| milexp '/’ primary
| primary

primary: ' expression ')’
| ‘=! primary
| WUMEER.

Lex Part
%

#include<stdio.h>

#include "y.tab.h"

extern yylval;

Yo}

%%

[0-9]+ {yylval=atoi(yytext);return num;}

[\H\-*V] {return yytext[0];}

DI {return yytext[0];}

[{return yytext[0];}
i

\n {return 0;}

%%

Yacc part:

Y04

#include<stdio.h>
#include<stdlib.h>
Yo}

%token num

Yleft '+' -’

Yoleft "*'"/'

%%

input:exp {printf{"%d\n",$$);exit(0);}

exp: exptexp {$$=$1+$3;}
lexp'-'exp {$$=$1-$3;}
lexp™'exp {$$=$1*$3;}

lexp'/'exp { if($3==0){printf("Divide by Zero.
Invalid expression.\n");exit(0);}

else $$=51/83;}

(‘'exp')'{$8=82;}

Inum {$$=81;};
%%

int yyerror()

{
printf("Error. Invalid Expression.\n");
exit(0);

b

int main()

{

printf("Enter an expression:\n");

yyparse();

